Yao Chen, Wang Geng, Wu Quanhui, Pan Yifeng, Chen Zhiqiang, Guo Jinming, Lin Chunming, Peng Yitong, Li Xiaohu
Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
Vascular Intervention Department, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China.
Medicine (Baltimore). 2025 Nov 21;104(47):e45846. doi: 10.1097/MD.0000000000045846.
Aortic dissection (AD) involves complex interactions among amino acid, glucose, and lipid metabolism, exacerbating aortic inflammation and extracellular matrix (ECM) degradation, coupled with smooth muscle cell (SMC) dysfunction (phenotypic alteration, aging, apoptosis). To explore AD pathogenesis, we integrated single-cell RNA sequencing (scRNA-seq), metabolomics, machine learning, and Mendelian randomization to investigate SMC changes and gene-metabolite interactions. ScRNA-seq data (GSE213740, GSE155468) were analyzed for cell clustering and pseudo-time trajectories via Seurat and Monocle2. Metabolomics (9 samples: 6 AD, 3 controls) and machine learning validated key genes/metabolites, with Mendelian randomization assessing causal links. Nine cell subsets and 2000 variable genes were identified, with SMCs central to AD via cholesterol metabolism. APOE and PLTP were key genes; metabolomics highlighted cholesterol esters (CEs) and triglycerides (TGs) as critical metabolites. Machine learning confirmed APOE/PLTP's high predictive accuracy (AUC: 0.796-0.989). Mendelian randomization linked elevated CEs and TGs to increased AD risk (IVW: P = .04 and P = .02, respectively). This study establishes a gene-metabolite network where APOE and PLTP regulate CEs/TGs, influencing SMC function and AD progression, offering potential therapeutic targets.
主动脉夹层(AD)涉及氨基酸、葡萄糖和脂质代谢之间的复杂相互作用,加剧主动脉炎症和细胞外基质(ECM)降解,同时伴有平滑肌细胞(SMC)功能障碍(表型改变、衰老、凋亡)。为了探究AD的发病机制,我们整合了单细胞RNA测序(scRNA-seq)、代谢组学、机器学习和孟德尔随机化方法,以研究SMC的变化以及基因与代谢物之间的相互作用。通过Seurat和Monocle2对scRNA-seq数据(GSE213740、GSE155468)进行细胞聚类和伪时间轨迹分析。代谢组学(9个样本:6例AD、3例对照)和机器学习验证了关键基因/代谢物,孟德尔随机化评估因果关系。鉴定出9个细胞亚群和2000个可变基因,SMC通过胆固醇代谢在AD中起核心作用。APOE和PLTP是关键基因;代谢组学强调胆固醇酯(CEs)和甘油三酯(TGs)是关键代谢物。机器学习证实APOE/PLTP具有较高的预测准确性(AUC:0.796 - 0.989)。孟德尔随机化将CEs和TGs升高与AD风险增加联系起来(IVW:P分别为0.04和0.02)。本研究建立了一个基因 - 代谢物网络,其中APOE和PLTP调节CEs/TGs,影响SMC功能和AD进展,提供了潜在的治疗靶点。