Suppr超能文献

疏水色谱法:用于糖原合成酶的纯化。

Hydrophobic chromatography: use for purification of glycogen synthetase.

作者信息

Shaltiel S, Er-El Z

出版信息

Proc Natl Acad Sci U S A. 1973 Mar;70(3):778-81. doi: 10.1073/pnas.70.3.778.

Abstract

A homologous series of omega-aminoalkylagaroses [Sepharose-NH(CH(2))(n)NH(2)] that varied in the length of their hydrocarbon side chains was synthesized. This family of agaroses was used for a new type of chromatography, in which retention of proteins is achieved mainly through lipophilic interactions between the hydrocarbon side chains on the agarose and accessible hydrophobic pockets in the protein. When an extract of rabbit muscle was subjected to chromatography on these modified agaroses, the columns with short "arms" (n = 2 and n = 3) excluded glycogen synthetase (EC 2.4.1.11), but the enzyme was retained on delta-aminobutyl-agarose (n = 4), from which it could be eluted with a linear NaCl gradient. Higher members of this series (e.g., n = 6) bind the synthetase so tightly that it can be eluted only in a denatured form. A column of delta-aminobutyl-agarose, which retained the synthetase, excluded glycogen phosphorylase (EC 2.4.1.1), which in this column series and under the same conditions requires side chains 5-(or 6)-carbon-atoms long for retention. Therefore, it is possible to isolate glycogen synthetase by passage of muscle extract through delta-aminobutyl-agarose, then to extract phosphorylase by subjecting the excluded proteins to chromatography on omega-aminohexyl-agarose (n = 6). On a preparative scale, the synthetase (I form) was purified 25- to 50-fold in one step. This paper describes some basic features and potential uses of hydrophobic chromatography. The relevance of the results presented here to the design and use of affinity chromatography columns is discussed.

摘要

合成了一系列碳氢化合物侧链长度不同的ω-氨基烷基琼脂糖[Sepharose-NH(CH₂)ₙNH₂]。这一系列琼脂糖被用于一种新型色谱法,在这种色谱法中,蛋白质的保留主要通过琼脂糖上的碳氢化合物侧链与蛋白质中可及的疏水口袋之间的亲脂相互作用来实现。当兔肌肉提取物在这些修饰的琼脂糖上进行色谱分析时,具有短“臂”(n = 2和n = 3)的柱排除了糖原合成酶(EC 2.4.1.11),但该酶保留在δ-氨基丁基琼脂糖(n = 4)上,可用线性NaCl梯度将其洗脱。该系列的更高成员(例如,n = 6)与合成酶结合非常紧密,以至于只能以变性形式将其洗脱。保留合成酶的δ-氨基丁基琼脂糖柱排除了糖原磷酸化酶(EC 2.4.1.1),在该柱系列中且在相同条件下,糖原磷酸化酶需要5-(或6)-碳原子长的侧链才能保留。因此,通过使肌肉提取物通过δ-氨基丁基琼脂糖来分离糖原合成酶是可行的,然后通过将排除的蛋白质在ω-氨基己基琼脂糖(n = 6)上进行色谱分析来提取磷酸化酶。在制备规模上,合成酶(I型)一步纯化了25至50倍。本文描述了疏水色谱的一些基本特征和潜在用途。讨论了此处给出的结果与亲和色谱柱设计和使用的相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/456b/433357/9fc9ee08c140/pnas00066-0149-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验