Suppr超能文献

枯草芽孢杆菌中芳香酸生物合成的基因-酶关系

Gene-enzyme relationships of aromatic acid biosynthesis in Bacillus subtilis.

作者信息

Hoch J A, Nester E W

出版信息

J Bacteriol. 1973 Oct;116(1):59-66. doi: 10.1128/jb.116.1.59-66.1973.

Abstract

Mutants have been isolated which correspond to every step concerned with the biosynthesis of the aromatic amino acids in Bacillus subtilis. Each mutant has been characterized, and the lesion it bore was analyzed by deoxyribonucleic acid transformation and PBS-1 mediated transduction. The biochemical analysis revealed that each of the mutations appears to have affected a single enzyme, except for two groups of pleiotropic mutations. All aroF mutants (chorismic acid synthetase) lack dehydroquinic acid synthetase (aroB) activity. The gene that specifies aroB is closely linked to the gene coding for the aroF enzyme. Both genes are a part of the aro cluster. Mutants lacking chorismate mutase activity also lack d-arabino-heptulosonic acid-7-phosphate synthetase and shikimate kinase activity, presumably as a result of these three activities forming a multi-enzyme complex. Another mutant, previously undescribed, had been isolated. The affected gene codes for the tyrosine and phenylalanine aminotransferase activity. All of the mutations have been located on the B. subtilis genome except those in the genes specifying shikimate kinase activity and tyrosine-phenylalanine aminotransferase activity.

摘要

已经分离出了与枯草芽孢杆菌中芳香族氨基酸生物合成相关的每一步相对应的突变体。对每个突变体进行了表征,并通过脱氧核糖核酸转化和PBS - 1介导的转导分析了其携带的损伤。生化分析表明,除了两组多效性突变外,每个突变似乎都影响一种酶。所有aroF突变体(分支酸合成酶)都缺乏脱氢奎尼酸合成酶(aroB)活性。指定aroB的基因与编码aroF酶的基因紧密连锁。这两个基因都是aro簇的一部分。缺乏分支酸变位酶活性的突变体也缺乏d - 阿拉伯庚酮糖酸 - 7 - 磷酸合成酶和莽草酸激酶活性,推测是由于这三种活性形成了一种多酶复合物。另一个以前未描述过的突变体也已被分离出来。受影响的基因编码酪氨酸和苯丙氨酸转氨酶活性。除了指定莽草酸激酶活性和酪氨酸 - 苯丙氨酸转氨酶活性的基因中的突变外,所有突变都已定位在枯草芽孢杆菌基因组上。

相似文献

1
Gene-enzyme relationships of aromatic acid biosynthesis in Bacillus subtilis.
J Bacteriol. 1973 Oct;116(1):59-66. doi: 10.1128/jb.116.1.59-66.1973.
2
Aromatic amino acid biosynthesis: gene-enzyme relationships in Bacillus subtilis.
J Bacteriol. 1967 Nov;94(5):1706-14. doi: 10.1128/jb.94.5.1706-1714.1967.
3
Repression of aromatic amino acid biosynthesis in Escherichia coli K-12.
J Bacteriol. 1971 Oct;108(1):386-99. doi: 10.1128/jb.108.1.386-399.1971.
6
Genetic analysis of phenylalanine-responding mutants of Pseudomonas aeruginosa.
J Bacteriol. 1972 Dec;112(3):1070-5. doi: 10.1128/jb.112.3.1070-1075.1972.
7
Regulatory gene of phenylalanine biosynthesis (pheR) in Salmonella typhimurium.
J Bacteriol. 1973 Jul;115(1):121-8. doi: 10.1128/jb.115.1.121-128.1973.
8
An enzyme common to histidine and aromatic amino acid biosynthesis in Bacillus subtilis.
J Bacteriol. 1976 May;126(2):699-705. doi: 10.1128/jb.126.2.699-705.1976.

引用本文的文献

1
Gut microbiome signatures of vegan, vegetarian and omnivore diets and associated health outcomes across 21,561 individuals.
Nat Microbiol. 2025 Jan;10(1):41-52. doi: 10.1038/s41564-024-01870-z. Epub 2025 Jan 6.
3
Intracellular Zn(II) Intoxication Leads to Dysregulation of the PerR Regulon Resulting in Heme Toxicity in Bacillus subtilis.
PLoS Genet. 2016 Dec 9;12(12):e1006515. doi: 10.1371/journal.pgen.1006515. eCollection 2016 Dec.
4
Bacilysin from Bacillus amyloliquefaciens FZB42 has specific bactericidal activity against harmful algal bloom species.
Appl Environ Microbiol. 2014 Dec;80(24):7512-20. doi: 10.1128/AEM.02605-14. Epub 2014 Sep 26.
5
Functional screening of a metagenomic library reveals operons responsible for enhanced intestinal colonization by gut commensal microbes.
Appl Environ Microbiol. 2013 Jun;79(12):3829-38. doi: 10.1128/AEM.00581-13. Epub 2013 Apr 12.
6
The Bacillus subtilis chromosome.
Microbiol Rev. 1980 Mar;44(1):57-82. doi: 10.1128/mr.44.1.57-82.1980.
7
Adaptive response of Bacillus subtilis to N-methyl-N'-nitro-N-nitrosoguanidine.
J Bacteriol. 1983 Feb;153(2):756-62. doi: 10.1128/jb.153.2.756-762.1983.
8
Mapping of the 5-methyltryptophan resistance locus in Bacillus subtilis.
J Bacteriol. 1974 Jan;117(1):315-7. doi: 10.1128/jb.117.1.315-317.1974.
9
Synthesis of bacilysin by Bacillus subtilis branches from prephenate of the aromatic amino acid pathway.
J Bacteriol. 1988 Jan;170(1):482-4. doi: 10.1128/jb.170.1.482-484.1988.

本文引用的文献

2
REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS.
J Bacteriol. 1961 May;81(5):741-6. doi: 10.1128/jb.81.5.741-746.1961.
5
Linkage of genetic units of Bacillus subtilis in DNA transformation.
Proc Natl Acad Sci U S A. 1961 Jan 15;47(1):52-5. doi: 10.1073/pnas.47.1.52.
7
Gene controlling the uptake of shikimic acid by Escherichia coli.
J Bacteriol. 1966 Oct;92(4):1070-5. doi: 10.1128/jb.92.4.1070-1075.1966.
8
Partial enzyme aggregates formed by pleiotropic mutants in the arom gene cluster of Neurospora crassa.
Proc Natl Acad Sci U S A. 1971 Jan;68(1):58-62. doi: 10.1073/pnas.68.1.58.
9
Co-ordinate control of tryptophan, histidine and tyrosine enzyme synthesis in Bacillus subtilis.
J Mol Biol. 1971 Dec 28;62(3):577-89. doi: 10.1016/0022-2836(71)90157-4.
10
Genetic analysis of pleiotropic negative sporulation mutants in Bacillus subtilis.
J Bacteriol. 1971 Mar;105(3):896-901. doi: 10.1128/jb.105.3.896-901.1971.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验