Suppr超能文献

大肠杆菌中磷脂生物合成的温度控制

Temperature control of phospholipid biosynthesis in Escherichia coli.

作者信息

Sinensky M

出版信息

J Bacteriol. 1971 May;106(2):449-55. doi: 10.1128/jb.106.2.449-455.1971.

Abstract

The higher the growth temperature of Escherichia coli cultures the greater is the proportion of saturated fatty acids in the bacterial phospholipids. When fatty acids are exogenously supplied to E. coli, higher growth temperatures will likewise increase the relative incorporation of saturated fatty acids into phospholipids. One of the steps in the utilization of fatty acids for phospholipid biosynthesis is, therefore, temperature-controlled. The temperature effect observed in vivo with mixtures of (3)H-oleate and (14)C-palmitate is demonstrable in vitro by using mixtures of the coenzyme A derivative of these fatty acids for the acylation of alpha-glycerol phosphate to lysophosphatidic and phosphatidic acids. In E. coli extracts, the relative rates of transacylation of palmityl and oleyl coenzyme A vary as a function of incubation temperature in a manner which mimics the temperature control observed in vivo. The phosphatidic acid synthesized in vitro shows a striking enrichment of oleate at the beta position analogous to the positional specificity observed in phospholipids synthesized in vivo.

摘要

大肠杆菌培养物的生长温度越高,细菌磷脂中饱和脂肪酸的比例就越大。当向大肠杆菌外源供应脂肪酸时,较高的生长温度同样会增加饱和脂肪酸相对掺入磷脂的量。因此,脂肪酸用于磷脂生物合成的步骤之一是受温度控制的。在体内用(3)H-油酸酯和(14)C-棕榈酸酯混合物观察到的温度效应,在体外通过使用这些脂肪酸的辅酶A衍生物混合物将α-甘油磷酸酰化为溶血磷脂酸和磷脂酸得以证实。在大肠杆菌提取物中,棕榈酰辅酶A和油酰辅酶A的转酰基相对速率随孵育温度而变化,其方式模拟了在体内观察到的温度控制。体外合成的磷脂酸在β位显示出显著的油酸富集,类似于体内合成的磷脂中观察到的位置特异性。

相似文献

1
Temperature control of phospholipid biosynthesis in Escherichia coli.
J Bacteriol. 1971 May;106(2):449-55. doi: 10.1128/jb.106.2.449-455.1971.
6
Altered phospholipid metabolism in Escherichia coli accompanying killing by disrupted granulocytes.
Infect Immun. 1975 Jun;11(6):1269-77. doi: 10.1128/iai.11.6.1269-1277.1975.

引用本文的文献

1
Bacterial cell membrane models: choosing the lipid composition.
Soft Matter. 2025 Aug 26. doi: 10.1039/d5sm00378d.
2
Enhanced cold tolerance mechanisms in : comparative analysis of pre-adaptation and direct low-temperature exposure.
Front Microbiol. 2024 Oct 17;15:1465351. doi: 10.3389/fmicb.2024.1465351. eCollection 2024.
5
Overview of the Cellular Stress Responses Involved in Fatty Acid Overproduction in E. coli.
Mol Biotechnol. 2022 Apr;64(4):373-387. doi: 10.1007/s12033-021-00426-4. Epub 2021 Nov 18.
7
Regulation of lipid saturation without sensing membrane fluidity.
Nat Commun. 2020 Feb 6;11(1):756. doi: 10.1038/s41467-020-14528-1.
8
9
Temperature-Dependent Alkyl Glycerol Ether Lipid Composition of Mesophilic and Thermophilic Sulfate-Reducing Bacteria.
Front Microbiol. 2017 Aug 9;8:1532. doi: 10.3389/fmicb.2017.01532. eCollection 2017.
10
Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure.
Extremophiles. 2017 Jul;21(4):651-670. doi: 10.1007/s00792-017-0939-x. Epub 2017 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验