Suppr超能文献

溶菌酶和起始蛋白促使A型产气荚膜梭菌经热和碱处理改变后的孢子萌发

Germination of heat- and alkali-altered spores of Clostridium perfringens type A by lysozyme and an initiation protein.

作者信息

Duncan C L, Labbe R G, Reich R R

出版信息

J Bacteriol. 1972 Feb;109(2):550-9. doi: 10.1128/jb.109.2.550-559.1972.

Abstract

The normal system functioning in the utilization of metabolizable germinants by both heat-sensitive and heat-resistant spores of Clostridium perfringens was inactivated by heat or by treatment of the spores with alkali to remove a soluble coat protein layer. Altered spores were incapable of germination (less than 1%) and outgrowth (less than 0.0005%) in complex media without the addition of either lysozyme or an initiation protein produced by C. perfringens. The addition of either of these agents permitted, in the case of alkali-treated spores, both 90 to 95% germination and outgrowth, as measured by colony formation. In the case of heat-damaged spores, only 50% germination and 2% outgrowth resulted from addition of the initiation protein, whereas lysozyme permitted 85% germination and 8% outgrowth. Alteration of the spores by heat or alkali apparently inactivated the normal lytic system responsible for cortical degradation during germination. Kinetics of production of the initiation protein and conditions affecting both its activity and that of lysozyme on altered spores are described.

摘要

通过加热或用碱处理产气荚膜梭菌的孢子以去除可溶性外膜蛋白层,可使该菌的热敏性和耐热性孢子利用可代谢萌发剂的正常系统功能失活。在不添加溶菌酶或产气荚膜梭菌产生的起始蛋白的复杂培养基中,经过改变的孢子无法萌发(低于1%)和生长(低于0.0005%)。对于经碱处理的孢子,添加这两种试剂中的任何一种,通过菌落形成测量,均可实现90%至95%的萌发和生长。对于受热损伤的孢子,添加起始蛋白仅导致50%的萌发和2%的生长,而溶菌酶可使85%的孢子萌发和8%的孢子生长。加热或碱处理使孢子发生改变,显然会使负责萌发期间皮层降解的正常裂解系统失活。本文描述了起始蛋白的产生动力学以及影响其活性和溶菌酶对改变孢子活性的条件。

相似文献

2
Requirement for and sensitivity to lysozyme by Clostridium perfringens spores heated at ultrahigh temperatures.
Appl Microbiol. 1974 Apr;27(4):797-801. doi: 10.1128/am.27.4.797-801.1974.
3
Effect of lysozyme on ionic forms of spores of Clostridium perfringens type A.
J Bacteriol. 1975 May;122(2):794-5. doi: 10.1128/jb.122.2.794-795.1975.
7
Inactivation of Clostridium perfringens type A spores at ultrahigh temperatures.
Appl Microbiol. 1973 Sep;26(3):282-7. doi: 10.1128/am.26.3.282-287.1973.
9
Repair of heat-injured Clostridium perfringens spores during outgrowth.
Appl Microbiol. 1975 Nov;30(5):873-5. doi: 10.1128/am.30.5.873-875.1975.
10
Recovery of spores of Clostridium difficile altered by heat or alkali.
J Med Microbiol. 1989 Mar;28(3):217-21. doi: 10.1099/00222615-28-3-217.

引用本文的文献

1
Recoverability of heat-injured Bacillus spores by lysozyme and EDTA or alkaline thioglycollate.
World J Microbiol Biotechnol. 1996 Nov;12(6):595-9. doi: 10.1007/BF00327721.
2
Destruction of gram-negative food-borne pathogens by high pH involves disruption of the cytoplasmic membrane.
Appl Environ Microbiol. 1994 Nov;60(11):4009-14. doi: 10.1128/aem.60.11.4009-4014.1994.
3
Enterotoxin formation by Clostridium perfringens type A in a defined medium.
Appl Environ Microbiol. 1981 Jan;41(1):315-7. doi: 10.1128/aem.41.1.315-317.1981.
4
Reversal of radiation-dependent heat sensitization of Clostridium perfringens spores.
Appl Environ Microbiol. 1980 Mar;39(3):525-9. doi: 10.1128/aem.39.3.525-529.1980.
5
Identification of a germination system involved in the heat injury of Bacillus subtilis spores.
Appl Microbiol. 1972 Sep;24(3):412-7. doi: 10.1128/am.24.3.412-417.1972.
6
Effect of lysozyne on the recovery of heated Clostridium botulinum spores.
Appl Microbiol. 1974 Mar;27(3):613-5. doi: 10.1128/am.27.3.613-615.1974.
7
Recovery of heated Clostridium perfringens type A spores on selective media.
Appl Microbiol. 1974 Nov;28(5):793-7. doi: 10.1128/am.28.5.793-797.1974.
8
Requirement for and sensitivity to lysozyme by Clostridium perfringens spores heated at ultrahigh temperatures.
Appl Microbiol. 1974 Apr;27(4):797-801. doi: 10.1128/am.27.4.797-801.1974.
9
Enumeration of fecal Clostridium perfringens spores in egg yolk-free tryptose-sulfite-cycloserine agar.
Appl Microbiol. 1974 Mar;27(3):527-30. doi: 10.1128/am.27.3.527-530.1974.
10
Inactivation of Clostridium perfringens type A spores at ultrahigh temperatures.
Appl Microbiol. 1973 Sep;26(3):282-7. doi: 10.1128/am.26.3.282-287.1973.

本文引用的文献

1
RAPID TECHNIQUE FOR THE ENUMERATION OF CLOSTRIDIUM PERFINGENS.
Appl Microbiol. 1965 Jul;13(4):559-63. doi: 10.1128/am.13.4.559-563.1965.
3
Location and composition of spore mucopeptide in Bacillus species.
J Cell Biol. 1963 Mar;16(3):593-609. doi: 10.1083/jcb.16.3.593.
4
A cell-wall lytic enzyme associated with spores of Bacillus species.
J Gen Microbiol. 1957 Feb;16(1):236-49. doi: 10.1099/00221287-16-1-236.
5
Lysozyme and morphological alterations induced in Micrococcus lysodeikticus.
J Bacteriol. 1954 Aug;68(2):171-7. doi: 10.1128/jb.68.2.171-177.1954.
7
Structure and composition of resistant layers in bacterial spore coats.
J Gen Microbiol. 1970 Mar;60(3):347-55. doi: 10.1099/00221287-60-3-347.
8
Effect of lysozyme on resting spores of Bacillus megaterium.
J Bacteriol. 1969 Apr;98(1):238-45. doi: 10.1128/jb.98.1.238-245.1969.
9
Function and location of a "germination enzyme" in spores of Bacillus cereus.
J Gen Microbiol. 1966 Aug;44(2):293-502. doi: 10.1099/00221287-44-2-293.
10
Growth from spores of Clostridium perfringens in the presence of sodium nitrite.
Appl Microbiol. 1970 Feb;19(2):353-9. doi: 10.1128/am.19.2.353-359.1970.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验