Suppr超能文献

在增大的鸭红细胞中钠钾交换泵与容积控制机制的功能分离。

Functional separation of the Na-K exchange pump from the volume controlling mechanism in enlarged duck red cells.

作者信息

Kregenow F M

出版信息

J Gen Physiol. 1974 Oct;64(4):393-412. doi: 10.1085/jgp.64.4.393.

Abstract

Previous publications have described a "volume controlling mechanism" in duck erythrocytes that returns both enlarged and shrunken cells to their original isotonic volume. Enlarged cells return to their original size by readjusting their K content. To study the specificity of this aspect of the mechanism for K, we prepared enlarged cells with various Na and K contents. Only cells containing a high K content resume their original size in the standard isotonic medium. The process of regulation resembles that described above. In contrast, cells containing a high Na content fail to reestablish this volume, but shrink instead until they reach a limiting minimal volume (four-fifths of normal). Here, another mechanism, the cation pump rather than the volume controlling mechanism, removes Na and is responsible for the changes in cell size. Enlarged cells with an intermediate Na and K content utilize both mechanisms to reduce their cation content. Only if Na is prevented from leaving the cell and sufficient K is present initially, will these cells reestablish their original size. These studies demonstrate that the cation pump and volume controlling mechanism function independently and, when cells enlarge, only K can effectively traverse the pathway associated with the volume controlling mechanism. This route differs from the one used by the cation pump to eject Na.

摘要

以往的出版物描述了鸭红细胞中的一种“体积控制机制”,该机制可使增大和缩小的细胞恢复到其原始等渗体积。增大的细胞通过重新调整其钾含量恢复到原始大小。为了研究该机制中这一方面对钾的特异性,我们制备了具有不同钠和钾含量的增大细胞。只有含有高钾含量的细胞在标准等渗培养基中恢复其原始大小。调节过程与上述描述相似。相比之下,含有高钠含量的细胞无法重新建立这种体积,而是会缩小,直到达到极限最小体积(正常体积的五分之四)。在这里,另一种机制,即阳离子泵而非体积控制机制,会去除钠并导致细胞大小的变化。具有中等钠和钾含量的增大细胞利用这两种机制来降低其阳离子含量。只有当钠被阻止离开细胞且最初存在足够的钾时,这些细胞才会重新建立其原始大小。这些研究表明,阳离子泵和体积控制机制独立发挥作用,并且当细胞增大时,只有钾能够有效地通过与体积控制机制相关的途径。这条途径不同于阳离子泵用于排出钠的途径。

相似文献

5
Active sodium and potassium transport in high potassium and low potassium sheep red cells.
J Gen Physiol. 1971 Oct;58(4):438-66. doi: 10.1085/jgp.58.4.438.
6
Intracellular potassium. A determinant of the sodium-potassium pump rate.
J Gen Physiol. 1974 Mar;63(3):351-73. doi: 10.1085/jgp.63.3.351.
9
Interactions between temperature and tonicity on cation transport in dog red cells.
J Physiol. 1975 Mar;246(2):371-95. doi: 10.1113/jphysiol.1975.sp010895.
10
Several cation transporters and volume regulation in high-K dog red blood cells.
Am J Physiol. 1991 Mar;260(3 Pt 1):C589-97. doi: 10.1152/ajpcell.1991.260.3.C589.

引用本文的文献

1
Gallbladder epithelial cell hydraulic water permeability and volume regulation.
J Gen Physiol. 1982 Mar;79(3):481-505. doi: 10.1085/jgp.79.3.481.
2
3
Epithelial cell volume modulation and regulation.
J Membr Biol. 1982;69(3):167-76. doi: 10.1007/BF01870396.
4
Volume regulation by Necturus gallbladder: basolateral KCl exit.
J Membr Biol. 1984;81(3):219-32. doi: 10.1007/BF01868715.
6
The regulation of cellular volume in renal cortical slices incubated in hyposmotic medium.
J Physiol. 1976 May;257(1):137-54. doi: 10.1113/jphysiol.1976.sp011360.
8
Genetic alterations in potassium transport in L cells.
Proc Natl Acad Sci U S A. 1978 Nov;75(11):5589-93. doi: 10.1073/pnas.75.11.5589.
10
Dissociation of cellular K+ accumulation from net Na+ transport by toad urinary bladder.
J Membr Biol. 1978 Jul 21;42(1):19-43. doi: 10.1007/BF01870392.

本文引用的文献

1
Cation control in human erythrocytes.
J Physiol. 1949 May 15;108(3):247-63.
2
The haemolytic action of potassium salts.
J Physiol. 1942 Nov 30;101(3):265-83. doi: 10.1113/jphysiol.1942.sp003981.
4
Regulation of cell volume by active cation transport in high and low potassium sheep red cells.
J Gen Physiol. 1960 Sep;44(1):169-94. doi: 10.1085/jgp.44.1.169.
5
The linkage of sodium, potassium, and ammonium active transport across the human erythrocyte membrane.
Biochim Biophys Acta. 1957 Jul;25(1):118-28. doi: 10.1016/0006-3002(57)90426-2.
6
Cation loading of red blood cells.
J Physiol. 1967 Nov;193(2):459-66. doi: 10.1113/jphysiol.1967.sp008371.
7
Sodium movement in high sodium feline red cells.
J Gen Physiol. 1971 Jun;57(6):684-96. doi: 10.1085/jgp.57.6.684.
8
Sodium movements in the human red blood cell.
J Gen Physiol. 1970 Sep;56(3):322-41. doi: 10.1085/jgp.56.3.322.
9
The red cell membrane and the transport of sodium and potassium.
Am J Med. 1966 Nov;41(5):666-80. doi: 10.1016/0002-9343(66)90029-5.
10
Active sodium and potassium transport in high potassium and low potassium sheep red cells.
J Gen Physiol. 1971 Oct;58(4):438-66. doi: 10.1085/jgp.58.4.438.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验