Suppr超能文献

Amblyopia occurs in retinal ganglion cells in cats reared with convergent squint without alternating fixation.

作者信息

Ikeda H, Tremain K E

出版信息

Exp Brain Res. 1979 May 2;35(3):559-82. doi: 10.1007/BF00236772.

Abstract

The spatial resolving power, contrast sensitivity, and receptive field properties of retinal ganglion cells were studied in cats reared with either convergent or divergent squint in one eye. Sustained-X cells in the area centralis of the squinting eye of the cats with esotropia without alternating fixation showed significantly poorer spatial resolution, and reduced contrast sensitivity compared with cells in the area centralis of the normal eye. These amblyopic sustained-X cells in the area centralis of the squinting eye had receptive field characteristics similar to those found in immature cells of young kittens. They had a shallow sensitivity gradient within a relatively widespread centre zone and a weak and widespread inhibitory surround. In contrast, the sustained cells in the area centralis of the normal eye revealed a typical, well defined, small centre zone with its sensitivity gradient extremely steep and its inhibitory surround strong and confined. A minor degree of amblyopia was also found in transient Y-cells in the area centralis of the squinting eye of these cats. However, no loss of resolving power was found in the cells in the area centralis of the squinting eye of the cats with esotropia or exotropia which showed alternating fixation. Thus, amblyopia occurs in those eyes which have lost the use of the area centralis as the normal visual axis during early postnatal development, and its organic lesion is already apparent in the retinal ganglion cells--the third order neurone in the afferent visual system. It is suggested that the loss of the ability to fixate results in inadequate stimulation of the central retinal ganglion cells due to the habitual presence of blurred images at the area centralis which prevents their full development during the critical period.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验