Suppr超能文献

酿酒酵母S-腺苷甲硫氨酸和甲硫氨酸生物合成系统中的诱导和阻遏

Induction and repression in the S-adenosylmethionine and methionine biosynthetic systems of Saccharomyces cerevisiae.

作者信息

Ferro A J, Spence K D

出版信息

J Bacteriol. 1973 Nov;116(2):812-7. doi: 10.1128/jb.116.2.812-817.1973.

Abstract

Two methionine biosynthetic enzymes and the methionine adenosyltransferase are repressed in Saccharomyces cerevisiae when grown under conditions where the intracellular levels of S-adenosylmethionine are high. The nature of the co-repressor molecule of this repression was investigated by following the intracellular levels of methionine, S-adenosylmethionine, and S-adenosylhomocysteine, as well as enzyme activities, after growth under various conditions. Under all of the conditions found to repress these enzymes, there is an accompanying induction of the S-adenosylmethionine-homocysteine methyltransferase which suggests that this enzyme may play a key role in the regulation of S-adenosylmethionine and methionine balance and synthesis. S-methylmethionine also induces the methyltransferase, but unlike S-adenosylmethionine, it does not repress the methionine adenosyltransferase or other methionine biosynthetic enzymes tested.

摘要

当酿酒酵母在细胞内S-腺苷甲硫氨酸水平较高的条件下生长时,两种甲硫氨酸生物合成酶和甲硫氨酸腺苷转移酶会受到抑制。通过在各种条件下培养后跟踪甲硫氨酸、S-腺苷甲硫氨酸和S-腺苷高半胱氨酸的细胞内水平以及酶活性,研究了这种抑制作用的共抑制分子的性质。在所有被发现能抑制这些酶的条件下,都会伴随诱导S-腺苷甲硫氨酸-高半胱氨酸甲基转移酶,这表明该酶可能在S-腺苷甲硫氨酸和甲硫氨酸平衡及合成的调节中起关键作用。S-甲基甲硫氨酸也能诱导甲基转移酶,但与S-腺苷甲硫氨酸不同的是,它不会抑制甲硫氨酸腺苷转移酶或所测试的其他甲硫氨酸生物合成酶。

相似文献

2
S-adenosyl methionine-mediated repression of methionine biosynthetic enzymes in Saccharomyces cerevisiae.
J Bacteriol. 1973 Jun;114(3):928-33. doi: 10.1128/jb.114.3.928-933.1973.
3
Assay and regulation of S-adenosylmethionine synthetase in Saccharomyces cerevisiae and Candida utilis.
J Bacteriol. 1975 Jan;121(1):267-71. doi: 10.1128/jb.121.1.267-271.1975.
4
Effects of regulatory mutations upon methionine biosynthesis in Saccharomyces cerevisiae: loci eth2-eth3-eth10.
J Bacteriol. 1973 Sep;115(3):1084-93. doi: 10.1128/jb.115.3.1084-1093.1973.
6
Methionine adenosyltransferase and ethionine resistance in Saccharomyces cerevisiae.
J Bacteriol. 1972 Sep;111(3):778-83. doi: 10.1128/jb.111.3.778-783.1972.
9
S-adenosylmethionine metabolism by members of the genus Candida.
Can J Microbiol. 1973 Oct;19(10):1297-303. doi: 10.1139/m73-208.
10
Biochemical and regulatory effects of methionine analogues in Saccharomyces cerevisiae.
J Bacteriol. 1975 May;122(2):375-84. doi: 10.1128/jb.122.2.375-384.1975.

引用本文的文献

1
Some effects of douglas fir terpenes on certain microorganisms.
Appl Environ Microbiol. 1980 Aug;40(2):301-4. doi: 10.1128/aem.40.2.301-304.1980.
2
Antifungal azoxybacilin exhibits activity by inhibiting gene expression of sulfite reductase.
Antimicrob Agents Chemother. 1996 Jan;40(1):127-32. doi: 10.1128/AAC.40.1.127.
3
Stimulation of yeast ascospore germination and outgrowth by S-adenosylmethionine.
J Bacteriol. 1980 May;142(2):608-14. doi: 10.1128/jb.142.2.608-614.1980.
6
Assay and regulation of S-adenosylmethionine synthetase in Saccharomyces cerevisiae and Candida utilis.
J Bacteriol. 1975 Jan;121(1):267-71. doi: 10.1128/jb.121.1.267-271.1975.

本文引用的文献

2
METABOLIC REGULATION OF ADENOSINE TRIPHOSPHATE SULFURYLASE IN YEAST.
J Bacteriol. 1964 Nov;88(5):1341-8. doi: 10.1128/JB.88.5.1341-1348.1964.
4
Formation and metabolism of S-adenosyl-L-homocysteine in yeast.
Arch Biochem Biophys. 1962 Mar;96:575-9. doi: 10.1016/0003-9861(62)90339-9.
5
Improved procedure for the isolation of S-adenosylmethionine and S-adenosylethionine.
Arch Biochem Biophys. 1959 Jul;83(1):28-34. doi: 10.1016/0003-9861(59)90006-2.
6
The formation of S-adenosylmethionine in yeast.
J Biol Chem. 1957 Dec;229(2):1037-50.
8
Regulation of homoserine O-transacetylase, first step in methionine biosyntheis in Saccharomyces cerevisiae.
Biochem Biophys Res Commun. 1967 Jul 21;28(2):256-62. doi: 10.1016/0006-291x(67)90438-x.
10
Genetic and regulatory aspects of methionine biosynthesis in Saccharomyces cerevisiae.
J Bacteriol. 1969 Jan;97(1):328-36. doi: 10.1128/jb.97.1.328-336.1969.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验