Kürten S, Obe G
Mutat Res. 1975 Feb;27(2):285-94. doi: 10.1016/0027-5107(75)90089-5.
The Chinese hamster bone marrow was used as a test system in vivo to analyse the chromosome-danaging effect of bleomycin. Both chromosome and chromatid aberrations were found. Mitoses with aberrations (Ma) show a linear dose-effect relationship after a recovery time of 24 h, the same hold true for cells with micronuclei (Cm) and for mitoses with premature chromosome condensation (PCC). The dose-effect relationships for Ma, Cm and PCC run parallel to each other with Ma at the highest and PCC at the lowest level (Ma greater than Cm greater than PCC). The time-effect relationships for Ma, Cm and PCC show that after 12 h recovery time there are no PCCs but the highest frequencies of Ma and Cm indicating that most cells are in their first post-treatment mitoses or Gi-phases at this fixation time. In addition to the frequency determinations autoradiographic analysis were performed to clarigy the nature of the PCCs. The results are interpreted as follows: bleomycin induces chromosomal aberrations that in turn give rise to micronuclei by means of lagging chromatin, main and micronuclei eventually become asynchronous in their cell cycles and mitosing main nuclei induce PCC in the micronuclei.