Suppr超能文献

A Markov process of gene frequency change in a geographically structured population.

作者信息

Maruyama T

出版信息

Genetics. 1974 Feb;76(2):367-77. doi: 10.1093/genetics/76.2.367.

Abstract

A Markov process (chain) of gene frequency change is derived for a geographically-structured model of a population. The population consists of colonies which are connected by migration. Selection operates in each colony independently. It is shown that there exists a stochastic clock that transforms the originally complicated process of gene frequency change to a random walk which is independent of the geographical structure of the population. The time parameter is a local random time that is dependent on the sample path. In fact, if the alleles are selectively neutral, the time parameter is exactly equal to the sum of the average local genetic variation appearing in the population, and otherwise they are approximately equal. The Kolmogorov forward and backward equations of the process are obtained. As a limit of large population size, a diffusion process is derived. The transition probabilities of the Markov chain and of the diffusion process are obtained explicitly. Certain quantities of biological interest are shown to be independent of the population structure. The quantities are the fixation probability of a mutant, the sum of the average local genetic variation and the variation summed over the generations in which the gene frequency in the whole population assumes a specified value.

摘要

相似文献

1
A Markov process of gene frequency change in a geographically structured population.
Genetics. 1974 Feb;76(2):367-77. doi: 10.1093/genetics/76.2.367.
2
A simple proof that certain quantities are independent of the geographical structure of population.
Theor Popul Biol. 1974 Apr;5(2):148-54. doi: 10.1016/0040-5809(74)90037-9.
3
A diffusion approach to approximating preservation probabilities for gene duplicates.
J Math Biol. 2006 Aug;53(2):215-30. doi: 10.1007/s00285-006-0001-6. Epub 2006 May 6.
4
Distributions of time to fixation of neutral genes.
Theor Popul Biol. 1974 Apr;5(2):192-207. doi: 10.1016/0040-5809(74)90041-0.
6
The strong-migration limit in geographically structured populations.
J Math Biol. 1980 Apr;9(2):101-14. doi: 10.1007/BF00275916.
7
Genetic structure of a population occupying a circular habitat.
Genetics. 1974 Oct;78(2):777-90. doi: 10.1093/genetics/78.2.777.
8
A mathematical formalism for natural selection with arbitrary spatial and genetic structure.
J Math Biol. 2019 Mar;78(4):1147-1210. doi: 10.1007/s00285-018-1305-z. Epub 2018 Nov 14.
9
Stationary distribution of a 2-island 2-allele Wright-Fisher diffusion model with slow mutation and migration rates.
Theor Popul Biol. 2018 Dec;124:70-80. doi: 10.1016/j.tpb.2018.09.004. Epub 2018 Oct 9.
10
Stochastic selection in both haplophase and diplophase.
J Math Biol. 1976 Nov 25;3(3-4):263-9. doi: 10.1007/BF00275059.

引用本文的文献

2
Fast and strong amplifiers of natural selection.
Nat Commun. 2021 Jun 29;12(1):4009. doi: 10.1038/s41467-021-24271-w.
3
Construction of arbitrarily strong amplifiers of natural selection using evolutionary graph theory.
Commun Biol. 2018 Jun 14;1:71. doi: 10.1038/s42003-018-0078-7. eCollection 2018.
4
The effect of spatial randomness on the average fixation time of mutants.
PLoS Comput Biol. 2017 Nov 27;13(11):e1005864. doi: 10.1371/journal.pcbi.1005864. eCollection 2017 Nov.
5
Computational complexity of ecological and evolutionary spatial dynamics.
Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15636-41. doi: 10.1073/pnas.1511366112. Epub 2015 Dec 7.
6
Modeling Invasion Dynamics with Spatial Random-Fitness Due to Micro-Environment.
PLoS One. 2015 Oct 28;10(10):e0140234. doi: 10.1371/journal.pone.0140234. eCollection 2015.
7
The duality of spatial death-birth and birth-death processes and limitations of the isothermal theorem.
R Soc Open Sci. 2015 Apr 29;2(4):140465. doi: 10.1098/rsos.140465. eCollection 2015 Apr.
8
Universality of fixation probabilities in randomly structured populations.
Sci Rep. 2014 Oct 27;4:6692. doi: 10.1038/srep06692.
9
Spatial invasion dynamics on random and unstructured meshes: implications for heterogeneous tumor populations.
J Theor Biol. 2014 May 21;349:66-73. doi: 10.1016/j.jtbi.2014.01.009. Epub 2014 Jan 23.
10
Selection for altruism through random drift in variable size populations.
BMC Evol Biol. 2012 May 10;12:61. doi: 10.1186/1471-2148-12-61.

本文引用的文献

1
ACUTE DACRYOADENITIS DUE TO THE MORAX-AXENFELD DIPLOBACILLUS.
Br J Ophthalmol. 1937 Jul;21(7):367-8. doi: 10.1136/bjo.21.7.367.
3
Evolution in Mendelian Populations.
Genetics. 1931 Mar;16(2):97-159. doi: 10.1093/genetics/16.2.97.
4
A migration matrix model for the study of random genetic drift.
Genetics. 1968 Aug;59(4):565-92. doi: 10.1093/genetics/59.4.565.
5
On the fixation probability of mutant genes in a subdivided population.
Genet Res. 1970 Apr;15(2):221-5. doi: 10.1017/s0016672300001543.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验