Allen J B, Sondhi M M
J Acoust Soc Am. 1979 Jul;66(1):123-32. doi: 10.1121/1.383064.
In this paper we report on a new method of solving a previous derived, two-dimensional model, integral equation for basilar membrane (BM) motion. The method uses a recursive algorithm for the solution of an initial-value problem in the time domain, combined with a fast Fourier transform (FFT) convolution in the space domain at each time step. Thus, the method capitalizes on the high speed and accuracy of the FFT yet allows the BM to have nonlinear mechanical properties. Using the new method we compute (linear) solutions for various choices of model parameters and compare the results to the experimental measurements of Rhode. [J. Acoust. Soc. Am. 49, 1218-1231 (1971)]. We also demonstrate the effect of including longitudinal stiffness along the BM and conclude that it is useful in matching the high-frequency slope as measured by Rhode.
在本文中,我们报告了一种求解先前推导的二维模型(即基底膜(BM)运动的积分方程)的新方法。该方法使用递归算法来求解时域中的初值问题,并在每个时间步长结合空间域中的快速傅里叶变换(FFT)卷积。因此,该方法利用了FFT的高速性和准确性,同时允许基底膜具有非线性力学特性。使用新方法,我们针对各种模型参数选择计算了(线性)解,并将结果与罗德的实验测量结果进行了比较。[《美国声学学会杂志》49, 1218 - 1231 (1971)]。我们还展示了沿基底膜包含纵向刚度的效果,并得出结论,这对于匹配罗德测量的高频斜率很有用。