Suppr超能文献

大肠杆菌在甘油代谢失控期间甲基乙二醛的致死性合成。

Lethal synthesis of methylglyoxal by Escherichia coli during unregulated glycerol metabolism.

作者信息

Freedberg W B, Kistler W S, Lin E C

出版信息

J Bacteriol. 1971 Oct;108(1):137-44. doi: 10.1128/jb.108.1.137-144.1971.

Abstract

In Escherichia coli K-12, the conversion of glycerol to triose phosphate is regulated by two types of control mechanism: the rate of synthesis of glycerol kinase and the feedback inhibition of its activity by fructose-1,6-diphosphate. A strain which has lost both control mechanisms by successive mutations, resulting in the constitutive synthesis of a glycerol kinase no longer sensitive to feedback inhibition, can produce a bactericidal factor from glycerol. This toxic factor has been identified by chemical and enzymological tests as methylglyoxal. Methylglyoxal can be derived from dihydroxyacetone phosphate through the action of an enzyme which is present at high constitutive levels in the extracts of the mutant as well as that of the wild-type strain. Nine spontaneous mutants resistant to 1 mm exogenous methylglyoxal have been isolated. In all cases the resistance is associated with increased levels of a glutathione-dependent enzymatic activity for the removal of methylglyoxal. Methylglyoxal-resistant mutants derived from the glycerol-sensitive parental strain also became immune to glycerol.

摘要

在大肠杆菌K-12中,甘油向磷酸丙糖的转化受两种控制机制调节:甘油激酶的合成速率以及果糖-1,6-二磷酸对其活性的反馈抑制。一株因连续突变而失去这两种控制机制的菌株,导致组成型合成不再对反馈抑制敏感的甘油激酶,该菌株可从甘油中产生一种杀菌因子。通过化学和酶学测试已确定这种毒性因子为甲基乙二醛。甲基乙二醛可通过一种酶的作用从磷酸二羟丙酮衍生而来,该酶在突变体提取物以及野生型菌株提取物中均以高组成型水平存在。已分离出9个对1 mM外源甲基乙二醛具有抗性的自发突变体。在所有情况下,抗性都与用于去除甲基乙二醛的谷胱甘肽依赖性酶活性水平的增加有关。源自甘油敏感亲本菌株的甲基乙二醛抗性突变体也对甘油产生了免疫。

相似文献

1
Lethal synthesis of methylglyoxal by Escherichia coli during unregulated glycerol metabolism.
J Bacteriol. 1971 Oct;108(1):137-44. doi: 10.1128/jb.108.1.137-144.1971.
3
Glycerol kinase, the pacemaker for the dissimilation of glycerol in Escherichia coli.
J Bacteriol. 1970 Jun;102(3):753-9. doi: 10.1128/jb.102.3.753-759.1970.
4
Accumulation of toxic concentrations of methylglyoxal by wild-type Escherichia coli K-12.
J Bacteriol. 1974 Aug;119(2):357-62. doi: 10.1128/jb.119.2.357-362.1974.
5
Promoter-like mutant with increased expression of the glycerol kinase operon of Escherichia coli.
J Bacteriol. 1971 Jun;106(3):724-31. doi: 10.1128/jb.106.3.724-731.1971.
6
Role of GldA in dihydroxyacetone and methylglyoxal metabolism of Escherichia coli K12.
FEMS Microbiol Lett. 2008 Feb;279(2):180-7. doi: 10.1111/j.1574-6968.2007.01032.x. Epub 2007 Dec 20.
7
Accumulation of methylglyoxal in a mutant of Escherichia coli constitutive for gluconate catabolism.
J Bacteriol. 1973 Sep;115(3):727-31. doi: 10.1128/jb.115.3.727-731.1973.
8
Three kinds of controls affecting the expression of the glp regulon in Escherichia coli.
J Bacteriol. 1973 Sep;115(3):816-23. doi: 10.1128/jb.115.3.816-823.1973.
9
Isolation and characterization of a phosphonomycin-resistant mutant of Escherichia coli K-12.
J Bacteriol. 1972 Jun;110(3):935-44. doi: 10.1128/jb.110.3.935-944.1972.
10
Metabolism of D-arabinose: a new pathway in Escherichia coli.
J Bacteriol. 1971 Apr;106(1):90-6. doi: 10.1128/jb.106.1.90-96.1971.

引用本文的文献

2
Reactive metabolic byproducts contribute to antibiotic lethality under anaerobic conditions.
Mol Cell. 2022 Sep 15;82(18):3499-3512.e10. doi: 10.1016/j.molcel.2022.07.009. Epub 2022 Aug 15.
3
A universal trade-off between growth and lag in fluctuating environments.
Nature. 2020 Aug;584(7821):470-474. doi: 10.1038/s41586-020-2505-4. Epub 2020 Jul 15.
7
Metabolomics analysis identifies d-Alanine-d-Alanine ligase as the primary lethal target of d-Cycloserine in mycobacteria.
J Proteome Res. 2014 Feb 7;13(2):1065-76. doi: 10.1021/pr4010579. Epub 2013 Dec 13.
8
Dissecting a complex chemical stress: chemogenomic profiling of plant hydrolysates.
Mol Syst Biol. 2013 Jun 18;9:674. doi: 10.1038/msb.2013.30.
10
Large mutational target size for rapid emergence of bacterial persistence.
Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12740-5. doi: 10.1073/pnas.1205124109. Epub 2012 Jul 16.

本文引用的文献

1
Inhibition of succinic dehydrogenase by methylglyoxal.
J Biol Chem. 1950 Nov;187(1):289-97.
2
CAPTURE OF GLYCEROL BY CELLS OF ESCHERICHIA COLI.
Biochim Biophys Acta. 1965 Mar 29;94:479-87. doi: 10.1016/0926-6585(65)90056-7.
5
Utilization of L-alpha-glycerophosphate by Escherichia coli without hydrolysis.
Proc Natl Acad Sci U S A. 1962 Dec 15;48(12):2145-50. doi: 10.1073/pnas.48.12.2145.
6
Aminoacetone formation by Staphylococcus aureus.
Biochem J. 1960 Mar;74(3):478-85. doi: 10.1042/bj0740478.
7
Gluconeogenesis in Escherichia coli The role of triose phosphate isomerase.
FEBS Lett. 1969 Jul;4(1):19-20. doi: 10.1016/0014-5793(69)80184-5.
8
The regulation of Escherichia coli methylglyoxal synthase; a new control site in glycolysis?
FEBS Lett. 1971 Mar 16;13(4):213-216. doi: 10.1016/0014-5793(71)80538-0.
9
The formation and catabolism of methylglyoxal during glycolysis in Escherichia coli.
FEBS Lett. 1970 Dec 11;11(4):273-276. doi: 10.1016/0014-5793(70)80546-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验