Suppr超能文献

草履虫的被动电特性与纤毛协调问题。

Passive electrical properties of Paramecium and problems of ciliary coordination.

作者信息

Eckert R, Naitoh Y

出版信息

J Gen Physiol. 1970 Apr;55(4):467-83. doi: 10.1085/jgp.55.4.467.

Abstract

Potential recordings made simultaneously from opposite ends of the cell indicate that the cytoplasmic compartment of P. caudatum is nearly isopotential. Measured decrements of the spread of steady-state potentials are in essential agreement with calculated decrements for a short cable model of similar dimensions and electrical constants. Action potentials and passively conducted pulses spread at rates of over 100 microm per msec. In contrast, metachronal waves of ciliary beat progress over the cell with velocities below 1 microm per msec. Thus, electrical activity conducted by the plasma membrane cannot account for the metachronism of ciliary beat. The electrical properties of Paramecium are responsible, however, for coordinating the reorientation of cilia (either beating or paralyzed by NiCl(2)) which occurs over the entire cell in response to current passed across the plasma membrane. In response to a depolarization the cilia assume an anteriorly directed orientation ("ciliary reversal" for backward locomotion). The cilia over the anterior half of the organism reverse more strongly and with shorter latency than the cilia of the posterior half. This was true regardless of the location of the polarizing electrode. Since the membrane potential was shown to be essentially uniform between both ends of the cell, the cilia of the anterior and posterior must possess different sensitivities to membrane potential.

摘要

从细胞相对两端同时进行的电位记录表明,尾草履虫的细胞质区域几乎是等电位的。稳态电位传播的测量衰减与具有相似尺寸和电学常数的短电缆模型的计算衰减基本一致。动作电位和被动传导的脉冲以超过100微米/毫秒的速度传播。相比之下,纤毛搏动的相继波以低于1微米/毫秒的速度在细胞上传播。因此,质膜传导的电活动不能解释纤毛搏动的相继现象。然而,草履虫的电特性负责协调纤毛的重新定向(无论是跳动还是被氯化镍麻痹),这种重新定向会在整个细胞上发生,以响应跨质膜通过的电流。响应去极化,纤毛呈现向前定向(向后运动时为“纤毛反转”)。生物体前半部分的纤毛比后半部分的纤毛反转更强且潜伏期更短。无论极化电极的位置如何,都是如此。由于膜电位在细胞两端之间基本均匀,前部和后部的纤毛对膜电位必须具有不同的敏感性。

相似文献

2
Localization of calcium channels in Paramecium caudatum.尾草履虫中钙通道的定位
J Physiol. 1977 Sep;271(1):119-33. doi: 10.1113/jphysiol.1977.sp011993.

引用本文的文献

1
A Review for the Special Issue on as a Modern Model Organism.关于作为现代模式生物的专题综述。
Microorganisms. 2023 Apr 3;11(4):937. doi: 10.3390/microorganisms11040937.
2
An electrophysiological and kinematic model of Paramecium, the "swimming neuron".《草履虫,“游泳神经元”的电生理和运动学模型》
PLoS Comput Biol. 2023 Feb 9;19(2):e1010899. doi: 10.1371/journal.pcbi.1010899. eCollection 2023 Feb.
3
Integrative Neuroscience of , a "Swimming Neuron".“游泳神经元”的整合神经科学
eNeuro. 2021 Jun 7;8(3). doi: 10.1523/ENEURO.0018-21.2021. Print 2021 May-Jun.
5
Transitions between three swimming gaits in Paramecium escape.草履虫逃避时三种游动步态的转换。
Proc Natl Acad Sci U S A. 2011 May 3;108(18):7290-5. doi: 10.1073/pnas.1016687108. Epub 2011 Apr 4.
6
Calcium-mediated inactivation of calcium current in Paramecium.草履虫中钙介导的钙电流失活
J Physiol. 1980 Sep;306:193-203. doi: 10.1113/jphysiol.1980.sp013391.

本文引用的文献

1
Evidence for electrical transmission in nerve: Part I.神经电传导的证据:第一部分。
J Physiol. 1937 Jul 15;90(2):183-210. doi: 10.1113/jphysiol.1937.sp003507.
2
Ionic movements and electrical activity in giant nerve fibres.巨神经纤维中的离子运动与电活动。
Proc R Soc Lond B Biol Sci. 1958 Jan 1;148(930):1-37. doi: 10.1098/rspb.1958.0001.
5
Bend propagation along flagella.弯曲沿鞭毛的传播。
Nature. 1966 Jan 8;209(5019):161-3. doi: 10.1038/209161a0.
7
Control of ciliary motion.纤毛运动的控制
Physiol Rev. 1967 Jan;47(1):53-82. doi: 10.1152/physrev.1967.47.1.53.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验