Nishikawa K, Takemura S
J Biochem. 1978 Aug;84(2):259-66. doi: 10.1093/oxfordjournals.jbchem.a132126.
The reaction of Torulopsis (Candida) utilis 5S ribosomal RNA with kethoxal (beta-ethoxy-alpha-ketobutyraldehyde) was studied in an attempt to identify the exposed guanine residues. At most 7-8 out of 32 guanine residues in T.utilis 5S RNA were kethoxalated after reaction at 37 degrees C for 4 h in the presence of magnesium ions. Localization of the kethoxalated guanine residues in T.utilis 5S RNA was achieved by sequence analyses of RNase T1 digests of the kethoxalated 5S RNA. These analyses showed that residues G37, G57, G91, and some of the three guanine residues G80, G82, and G85, are the most accessible sites. Residues G30, G41, and G49 also reacted with kethoxal though less strongly. These results are for the most part compatible with our secondary structure model for T.utilis 5S 5S RNA (Nishikawa and Takemura (1974) J. Biochem. 76, 935-947). However, partial formation of some hydrogen bonds within the loop region of the model seems to be necessary to explain the inaccessibility of residue G101 to kethoxal. The results are also discussed in comparison with those of similar studies on E.coli 5S RNA.
为了鉴定出暴露的鸟嘌呤残基,对产朊假丝酵母(念珠菌属)5S核糖体RNA与乙氧甲叉丙酮(β-乙氧基-α-酮丁醛)的反应进行了研究。在镁离子存在的情况下,于37℃反应4小时后,产朊假丝酵母5S RNA的32个鸟嘌呤残基中最多有7 - 8个被乙氧甲叉丙酮化。通过对乙氧甲叉丙酮化的5S RNA的核糖核酸酶T1消化产物进行序列分析,确定了产朊假丝酵母5S RNA中乙氧甲叉丙酮化鸟嘌呤残基的定位。这些分析表明,残基G37、G57、G91以及G80、G82和G85这三个鸟嘌呤残基中的一些是最易接近的位点。残基G30、G41和G49也与乙氧甲叉丙酮发生反应,不过反应较弱。这些结果在很大程度上与我们构建的产朊假丝酵母5S RNA的二级结构模型相符(西川和竹村(1974年)《生物化学杂志》76卷,935 - 947页)。然而,为了解释残基G101对乙氧甲叉丙酮不可及的现象,模型环区域内似乎需要部分形成一些氢键。还将这些结果与对大肠杆菌5S RNA的类似研究结果进行了比较讨论。