Suppr超能文献

光合作用中光发射与自由能储存的热力学

Thermodynamics of light emission and free-energy storage in photosynthesis.

作者信息

Ross R T, Calvin M

出版信息

Biophys J. 1967 Sep;7(5):595-614. doi: 10.1016/S0006-3495(67)86609-8.

Abstract

A Planck law relationship between absorption and emission spectra is used to compute the fluorescence spectra of some photosynthetic systems from their absorption spectra. Calculated luminescence spectra of purple bacteria agree well but not perfectly with published experimental spectra. Application of the Planck law relation to published activation spectra for Systems I and II of spinach chloroplasts permits independent calculation of the luminescence spectra of the two systems; if the luminescence yield of System I is taken to be one-third the yield of System II, then the combined luminescence spectrum closely fits published experimental measurement.Consideration of the entropy associated with the excited state of the absorbing molecules is used to compute the oxidation-reduction potentials and maximum free-energy storage resulting from light absorption. Spinach chloroplasts under an illumination of 1 klux of white light can produce at most a potential difference of 1.32 ev for System I, and 1.36 ev for System II. In the absence of nonradiative losses, the maximum amount of free energy stored is 1.19 ev and 1.23 ev per photon absorbed for Systems I and II, respectively. The bacterium Chromatium under an illumination of 1 mw/cm(2) of Na D radiation can produce at most a potential difference of 0.90 ev; the maximum amount of free energy stored is 0.79 ev per photon absorbed.The combined effect of partial thermodynamic reversibility and a finite trapping rate on the amount of luminescence is considered briefly.

摘要

利用吸收光谱与发射光谱之间的普朗克定律关系,从一些光合系统的吸收光谱计算其荧光光谱。紫色细菌的计算发光光谱与已发表的实验光谱吻合良好,但并不完全一致。将普朗克定律关系应用于菠菜叶绿体系统I和系统II已发表的激活光谱,可以独立计算这两个系统的发光光谱;如果将系统I的发光产率设为系统II产率的三分之一,那么组合发光光谱与已发表的实验测量结果紧密拟合。考虑与吸收分子激发态相关的熵,用于计算光吸收产生的氧化还原电位和最大自由能存储量。在1千勒克斯白光照射下,菠菜叶绿体系统I最多可产生1.32电子伏特的电位差,系统II为1.36电子伏特。在不存在非辐射损失的情况下,系统I和系统II每吸收一个光子存储的最大自由能分别为1.19电子伏特和1.23电子伏特。在1毫瓦/平方厘米的钠D辐射照射下,嗜色菌最多可产生0.90电子伏特的电位差;每吸收一个光子存储的最大自由能为0.79电子伏特。简要考虑了部分热力学可逆性和有限俘获率对发光量的综合影响。

相似文献

2
Thermodynamics and the primary processes of photosynthesis.热力学与光合作用的主要过程。
Biophys J. 1969 Nov;9(11):1351-62. doi: 10.1016/S0006-3495(69)86457-X.
10
Quantum accumulation in photosynthetic oxygen evolution.光合放氧中的量子积累
Biophys J. 1972 Jul;12(7):839-50. doi: 10.1016/S0006-3495(72)86127-7.

引用本文的文献

1
Light quality, oxygenic photosynthesis and more.光质、氧光合作用等等。
Photosynthetica. 2022 Jan 6;60(1):25-28. doi: 10.32615/ps.2021.055. eCollection 2022.
5
Limits on Natural Photosynthesis.自然光合作用的限制。
J Phys Chem B. 2017 Aug 3;121(30):7229-7234. doi: 10.1021/acs.jpcb.7b03024. Epub 2017 Jul 19.
7
Colin A. Wraight, 1945-2014.科林·A·赖特,1945 - 2014年。
Photosynth Res. 2016 Feb;127(2):237-56. doi: 10.1007/s11120-015-0174-1. Epub 2015 Jul 23.
8
The controversy over the minimum quantum requirement for oxygen evolution.关于氧气释放的最小量子需求的争议。
Photosynth Res. 2014 Oct;122(1):97-112. doi: 10.1007/s11120-014-0014-8. Epub 2014 Jun 13.
9
The birth of the photosynthetic reaction center: the story of Lou Duysens.光合反应中心的诞生:卢·杜伊森斯的故事
Photosynth Res. 2014 May;120(1-2):3-7. doi: 10.1007/s11120-013-9959-2. Epub 2013 Dec 12.
10
Dissipation in bioenergetic electron transfer chains.生物能量电子转移链中的耗散。
Photosynth Res. 1996 May;48(1-2):127-38. doi: 10.1007/BF00041003.

本文引用的文献

2
Light production by green plants.绿色植物的发光现象。
J Gen Physiol. 1951 Jul;34(6):809-20. doi: 10.1085/jgp.34.6.809.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验