Sumrada R A, Cooper T G
J Biol Chem. 1982 Aug 10;257(15):9119-27.
Saccharomyces cerevisiae can use urea as sole nitrogen source by degrading it in two steps (urea carboxylase and allophanate hydrolase) to ammonia and carbon dioxide. We previously demonstrated that: 1) the enzymatic functions required for degradation are encoded in two tightly linked genetic loci and 2) pleiotropic mutations each resulting in the loss of both activities are found in both loci. These and other observations led to the hypothesis that urea degradation might be catalyzed by a multifunctional polypeptide. Waheed and Castric (1977) J. Biol. Chem. 252, 1628-1632), on the other hand, purified urea amidolyase from Candida utilis and reported it to be a tetramer composed of nonidentical 70- and 170-kilodalton subunits. To resolve the differing views of urea amidolyase structure, we purified the protein using rapid methods designed to avoid proteolytic cleavage. Application of these methods resulted in the isolation of a single, inducible and repressible, 204-kilodalton species. We observed no evidence for the existence of nonidentical subunits. A similar inducible, high molecular weight species was also detected in C. utilis. These biochemical results support our earlier hypothesis that urea degradation is carried out in yeast by an inducible and repressible protein composed of identical, multifunctional subunits.
酿酒酵母可以通过两步(尿素羧化酶和脲基甲酸水解酶)将尿素降解为氨和二氧化碳,从而将尿素用作唯一的氮源。我们之前证明:1)降解所需的酶功能由两个紧密连锁的基因座编码,2)在两个基因座中都发现了多效性突变,每个突变都会导致两种活性丧失。这些以及其他观察结果导致了一个假设,即尿素降解可能由一种多功能多肽催化。另一方面,Waheed和Castric(1977年,《生物化学杂志》252卷,1628 - 1632页)从产朊假丝酵母中纯化了尿素酰胺酶,并报道它是一种由不同的70千道尔顿和170千道尔顿亚基组成的四聚体。为了解决关于尿素酰胺酶结构的不同观点,我们使用旨在避免蛋白水解切割的快速方法纯化了该蛋白。应用这些方法导致分离出一种单一的、可诱导和可抑制的204千道尔顿的蛋白。我们没有观察到存在不同亚基的证据。在产朊假丝酵母中也检测到了类似的可诱导的高分子量蛋白。这些生化结果支持了我们早期的假设,即尿素降解在酵母中是由一种由相同的多功能亚基组成的可诱导和可抑制的蛋白质进行的。