Suppr超能文献

伯纳特柯克斯体谷氨酸转运系统的pH依赖性

pH dependence of the Coxiella burnetii glutamate transport system.

作者信息

Hackstadt T, Williams J C

出版信息

J Bacteriol. 1983 May;154(2):598-603. doi: 10.1128/jb.154.2.598-603.1983.

Abstract

The transport of glutamate, apparently a primary energy source for Coxiella burnetii, has been examined. C. burnetii is shown to possess a pH-dependent active transport system for L-glutamate with an apparent Kt of 61.1 microM and Vmax of 8.33 pmol/s per mg at pH 3.5. Both L-glutamine and L-asparagine competitively inhibited transport of glutamate, but D-glutamate, L-aspartate, L-glutamate-gamma-methyl ester, methionine sulfoximine, or alpha-ketoglutarate did not compete. This transport system is both temperature and energy dependent. Uptake of glutamate is highly sensitive to uncouplers of oxidative phosphorylation such as 2,4-dinitrophenol and carbonyl cyanide-m-chlorophenyl hydrazone that decrease the proton motive force across the cytoplasmic membrane. ATPase inhibitors such as dicyclohexylcarbodiimide or metabolic poisons such as KCN, NaF, or arsenite were much less effective as inhibitors of glutamate transport. Uptake of glutamate did not appear to be coupled to Na+ symport as in Escherichia coli since no monovalent cation requirement could be demonstrated. Instead, the Vmax of glutamate transport showed good correlation with the transmembrane pH gradient (delta pH). From these results, we propose that L-glutamate transport by C. burnetii is energized via a proton motive force.

摘要

已经对显然是伯氏考克斯氏体主要能量来源的谷氨酸转运进行了研究。结果表明,伯氏考克斯氏体拥有一个对L-谷氨酸具有pH依赖性的主动转运系统,在pH 3.5时,其表观Kt为61.1微摩尔,Vmax为每毫克8.33皮摩尔/秒。L-谷氨酰胺和L-天冬酰胺均竞争性抑制谷氨酸的转运,但D-谷氨酸、L-天冬氨酸、L-谷氨酸-γ-甲酯、蛋氨酸亚砜亚胺或α-酮戊二酸不参与竞争。该转运系统既依赖温度也依赖能量。谷氨酸的摄取对氧化磷酸化解偶联剂(如2,4-二硝基苯酚和羰基氰化物间氯苯腙)高度敏感,这些解偶联剂会降低跨细胞质膜的质子动力。二环己基碳二亚胺等ATP酶抑制剂或KCN、NaF或亚砷酸盐等代谢毒物作为谷氨酸转运抑制剂的效果要差得多。谷氨酸的摄取似乎不像在大肠杆菌中那样与Na +共转运偶联,因为未证明有单价阳离子需求。相反,谷氨酸转运的Vmax与跨膜pH梯度(ΔpH)显示出良好的相关性。根据这些结果,我们提出伯氏考克斯氏体的L-谷氨酸转运是通过质子动力提供能量的。

相似文献

1
pH dependence of the Coxiella burnetii glutamate transport system.
J Bacteriol. 1983 May;154(2):598-603. doi: 10.1128/jb.154.2.598-603.1983.
2
Active transport of proline by Coxiella burnetii.
J Gen Microbiol. 1984 Nov;130(11):2857-63. doi: 10.1099/00221287-130-11-2857.
4
Stability of the adenosine 5'-triphosphate pool in Coxiella burnetii: influence of pH and substrate.
J Bacteriol. 1981 Nov;148(2):419-25. doi: 10.1128/jb.148.2.419-425.1981.
5
Characterization of glutamine transport in Streptococcus mutans.
Oral Microbiol Immunol. 1995 Jun;10(3):183-7. doi: 10.1111/j.1399-302x.1995.tb00140.x.
6
Mechanism of L-glutamate transport in membrane vesicles from Bacillus stearothermophilus.
J Bacteriol. 1989 Feb;171(2):1118-25. doi: 10.1128/jb.171.2.1118-1125.1989.
9
Biochemical stratagem for obligate parasitism of eukaryotic cells by Coxiella burnetii.
Proc Natl Acad Sci U S A. 1981 May;78(5):3240-4. doi: 10.1073/pnas.78.5.3240.

引用本文的文献

2
Bovine blood derived macrophages are unable to control replication under hypoxic conditions.
Front Immunol. 2023 Jan 30;14:960927. doi: 10.3389/fimmu.2023.960927. eCollection 2023.
3
Metabolic Plasticity Aids Amphotropism of Coxiella burnetii.
Infect Immun. 2021 Nov 16;89(12):e0013521. doi: 10.1128/IAI.00135-21. Epub 2021 Sep 7.
4
Characterisation of putative lactate synthetic pathways of Coxiella burnetii.
PLoS One. 2021 Aug 13;16(8):e0255925. doi: 10.1371/journal.pone.0255925. eCollection 2021.
5
Conditional impairment of Coxiella burnetii by glucose-6P dehydrogenase activity.
Pathog Dis. 2021 Jul 20;79(6). doi: 10.1093/femspd/ftab034.
6
Critical Role for Molecular Iron in Coxiella burnetii Replication and Viability.
mSphere. 2020 Jul 22;5(4):e00458-20. doi: 10.1128/mSphere.00458-20.
7
Multiple Substrate Usage of to Feed a Bipartite Metabolic Network.
Front Cell Infect Microbiol. 2017 Jun 29;7:285. doi: 10.3389/fcimb.2017.00285. eCollection 2017.
8
Physicochemical and Nutritional Requirements for Axenic Replication Suggest Physiological Basis for Niche Restriction.
Front Cell Infect Microbiol. 2017 May 31;7:190. doi: 10.3389/fcimb.2017.00190. eCollection 2017.
9
Complementation of Arginine Auxotrophy for Genetic Transformation of Coxiella burnetii by Use of a Defined Axenic Medium.
Appl Environ Microbiol. 2016 May 2;82(10):3042-51. doi: 10.1128/AEM.00261-16. Print 2016 May 15.
10
Genome sequence of Coxiella burnetii strain Namibia.
Stand Genomic Sci. 2014 Dec 29;9:22. doi: 10.1186/1944-3277-9-22. eCollection 2014.

本文引用的文献

5
Biochemical stratagem for obligate parasitism of eukaryotic cells by Coxiella burnetii.
Proc Natl Acad Sci U S A. 1981 May;78(5):3240-4. doi: 10.1073/pnas.78.5.3240.
7
Stability of the adenosine 5'-triphosphate pool in Coxiella burnetii: influence of pH and substrate.
J Bacteriol. 1981 Nov;148(2):419-25. doi: 10.1128/jb.148.2.419-425.1981.
8
Properties of the glutamate transport system in Escherichia coli.
J Bacteriol. 1967 Mar;93(3):1009-16. doi: 10.1128/jb.93.3.1009-1016.1967.
9
Coupled transport of sodium and organic solutes.
Physiol Rev. 1970 Oct;50(4):637-718. doi: 10.1152/physrev.1970.50.4.637.
10
Sodium-stimulated transport of glutamate in Escherichia coli.
J Bacteriol. 1969 Oct;100(1):329-36. doi: 10.1128/jb.100.1.329-336.1969.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验