Suppr超能文献

失活去除后钠通道的一些动力学和稳态特性。

Some kinetic and steady-state properties of sodium channels after removal of inactivation.

作者信息

Oxford G S

出版信息

J Gen Physiol. 1981 Jan;77(1):1-22. doi: 10.1085/jgp.77.1.1.

Abstract

To study the kinetic and steady-state properties of voltage-dependent sodium conductance activation, squid giant axons were perfused internally with either pronase or N-bromoacetamide and voltage clamped. Parameters of activation, tau m and gNa(V), and deactivation, tau Na, were measured and compared with those obtained from control axons under the assumption that gNa oc m3h of the Hodgkin-Huxley scheme. tau m(V) values obtained from the turn-on of INa agree well with control axons and previous determinations by others. tau Na(V) values derived from Na tail currents were also unchanged by pronase treatment and matched fairly well previously published values. tau m(V) obtained from 3 x tau Na(V) were much larger than tau m(V) obtained from INa turn-on at the same potentials, resulting in a discontinuous distribution. Steady-state In (gNa/gNa max - gNa) vs. voltage was not linear and had a limiting logarithmic slope of 5.3 mV/e-fold gNa. Voltage step procedures that induce a second turn-on of INa during various stages of the deactivation (Na tail current) process reveal quasiexponential activation at early stages that becomes increasingly sigmoid as deactivation progresses. For moderate depolarizations, primary and secondary activation kinetics are superimposable. These data suggest that, although m3 can describe the shape of INa turn-on, it cannot quantitatively account for the kinetics of gNa after repolarization. Kinetic schemes for gNa in which substantial deactivation occurs by a unique pathway between conducting and resting states are shown to be unlikely. It appears that the rate-limiting step in linear kinetic models of activation may be between a terminal conducting state and the adjacent nonconducting intermediate.

摘要

为了研究电压依赖性钠电导激活的动力学和稳态特性,用链霉蛋白酶或N-溴乙酰胺对鱿鱼巨轴突进行内部灌注并进行电压钳制。在假设钠电导符合霍奇金-赫胥黎模型的m³h关系的前提下,测量激活参数(τm和gNa(V))以及失活参数(τNa),并与对照轴突得到的参数进行比较。从钠电流开启测得的τm(V)值与对照轴突以及其他人先前的测定结果吻合良好。链霉蛋白酶处理后,从钠尾电流得出的τNa(V)值也未改变,且与先前发表的值相当吻合。在相同电位下,由3×τNa(V)得到的τm(V)比从钠电流开启测得的τm(V)大得多,导致分布不连续。稳态ln(gNa/gNa max - gNa)与电压的关系不是线性的,其极限对数斜率为5.3 mV/每e倍gNa。在失活(钠尾电流)过程的不同阶段诱导钠电流再次开启的电压阶跃程序显示,早期阶段为准指数激活,随着失活进展逐渐变为S形。对于中等去极化,初级和次级激活动力学是可叠加的。这些数据表明,虽然m³可以描述钠电流开启的形状,但它不能定量解释复极化后钠电导的动力学。结果表明,钠电导通过传导态和静息态之间独特途径发生大量失活的动力学模型不太可能成立。似乎激活线性动力学模型中的限速步骤可能在终末传导态和相邻的非传导中间态之间。

相似文献

1
Some kinetic and steady-state properties of sodium channels after removal of inactivation.
J Gen Physiol. 1981 Jan;77(1):1-22. doi: 10.1085/jgp.77.1.1.
2
Fast and slow steps in the activation of sodium channels.
J Gen Physiol. 1979 Dec;74(6):691-711. doi: 10.1085/jgp.74.6.691.
4
Modification of sodium channel inactivation by alpha-chymotrypsin in canine cardiac Purkinje cells.
J Cardiovasc Electrophysiol. 1993 Dec;4(6):686-94. doi: 10.1111/j.1540-8167.1993.tb01254.x.
5
Sodium channel activation in the squid giant axon. Steady state properties.
J Gen Physiol. 1985 Jan;85(1):65-82. doi: 10.1085/jgp.85.1.65.
7
Some effects of n-pentane on the sodium and potassium currents of the squid giant axon.
J Physiol. 1981 Mar;312:57-70. doi: 10.1113/jphysiol.1981.sp013615.
8
Kinetics of activation of the sodium conductance in the squid giant axon.
J Physiol. 1983 Mar;336:621-34. doi: 10.1113/jphysiol.1983.sp014601.
9
Sodium inactivation mechanism modulates QX-314 block of sodium channels in squid axons.
Biophys J. 1978 Nov;24(2):569-74. doi: 10.1016/S0006-3495(78)85403-4.
10
Destruction of sodium conductance inactivation in squid axons perfused with pronase.
J Gen Physiol. 1973 Oct;62(4):375-91. doi: 10.1085/jgp.62.4.375.

引用本文的文献

1
Kv4.2 autism and epilepsy mutation enhances inactivation of closed channels but impairs access to inactivated state after opening.
Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3559-E3568. doi: 10.1073/pnas.1717082115. Epub 2018 Mar 26.
2
Effect of phenytoin on sodium conductances in rat hippocampal CA1 pyramidal neurons.
J Neurophysiol. 2016 Oct 1;116(4):1924-1936. doi: 10.1152/jn.01060.2015. Epub 2016 Aug 3.
3
A supercritical density of Na(+) channels ensures fast signaling in GABAergic interneuron axons.
Nat Neurosci. 2014 May;17(5):686-93. doi: 10.1038/nn.3678. Epub 2014 Mar 23.
4
Molecular mechanism of voltage sensing in voltage-gated proton channels.
J Gen Physiol. 2013 Mar;141(3):275-85. doi: 10.1085/jgp.201210857. Epub 2013 Feb 11.
5
Slowly inactivating component of Na+ current in peri-somatic region of hippocampal CA1 pyramidal neurons.
J Neurophysiol. 2013 Mar;109(5):1378-90. doi: 10.1152/jn.00435.2012. Epub 2012 Dec 12.
6
Fast sodium channel gating supports localized and efficient axonal action potential initiation.
J Neurosci. 2010 Jul 28;30(30):10233-42. doi: 10.1523/JNEUROSCI.6335-09.2010.
8
Alternative splicing of Na(V)1.7 exon 5 increases the impact of the painful PEPD mutant channel I1461T.
Channels (Austin). 2009 Jul-Aug;3(4):259-67. doi: 10.4161/chan.3.4.9341. Epub 2009 Jul 23.
9
Paroxysmal extreme pain disorder mutations within the D3/S4-S5 linker of Nav1.7 cause moderate destabilization of fast inactivation.
J Physiol. 2008 Sep 1;586(17):4137-53. doi: 10.1113/jphysiol.2008.154906. Epub 2008 Jul 3.
10
A simple modification of the Hodgkin and Huxley equations explains type 3 excitability in squid giant axons.
J R Soc Interface. 2008 Dec 6;5(29):1421-8. doi: 10.1098/rsif.2008.0166.

本文引用的文献

1
The components of membrane conductance in the giant axon of Loligo.
J Physiol. 1952 Apr;116(4):473-96. doi: 10.1113/jphysiol.1952.sp004718.
2
The action of calcium on the electrical properties of squid axons.
J Physiol. 1957 Jul 11;137(2):218-44. doi: 10.1113/jphysiol.1957.sp005808.
3
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J Physiol. 1952 Aug;117(4):500-44. doi: 10.1113/jphysiol.1952.sp004764.
4
The time course of sodium inactivation in squid giant axons.
J Physiol. 1980 Feb;299:289-307. doi: 10.1113/jphysiol.1980.sp013125.
5
Destruction of sodium conductance inactivation in squid axons perfused with pronase.
J Gen Physiol. 1973 Oct;62(4):375-91. doi: 10.1085/jgp.62.4.375.
6
Mechanism of action of propranolol on squid axon membranes.
J Pharmacol Exp Ther. 1973 Jan;184(1):155-62.
8
The effect of holding potential on the asymmetry currents in squid gaint axons.
J Physiol. 1974 Dec;243(3):847-67. doi: 10.1113/jphysiol.1974.sp010780.
10
Comparison of two-pulse sodium inactivation with reactivation in Myxicola giant axons.
Biophys J. 1976 Mar;16(3):245-8. doi: 10.1016/S0006-3495(76)85684-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验