Suppr超能文献

铜绿假单胞菌精氨酸脱亚胺酶途径中酶合成的调控

Regulation of enzyme synthesis in the arginine deiminase pathway of Pseudomonas aeruginosa.

作者信息

Mercenier A, Simon J P, Vander Wauven C, Haas D, Stalon V

出版信息

J Bacteriol. 1980 Oct;144(1):159-63. doi: 10.1128/jb.144.1.159-163.1980.

Abstract

The three enzymes of the arginine deiminase pathway in Pseudomonas aeruginosa strain PAO were induced strongly (50- to 100-fold) by a shift from aerobic growth conditions to very low oxygen tension. Arginine in the culture medium was not essential for induction, but increased the maximum enzyme levels twofold. The induction of the three enzymes arginine deiminase (EC 3.5.3.6), catabolic ornithine carbamoyltransferase (EC 2.1.3.3), and carbamate kinase (EC 2.7.2.3) appeared to be coordinate. Catabolic ornithine carbamoyltransferase was studied in most detail. Nitrate and nitrite, which can replace oxygen as terminal electron acceptors in P. aeruginosa, partially prevented enzyme induction by low oxygen tension in the wild-type strain, but not in nar (nitrate reductase-negative) mutants. Glucose was found to exert catabolite repression of the deiminase pathway. Generally, conditions of stress, such as depletion of the carbon and energy source or the phosphate source, resulted in induced synthesis of catabolic ornithine carbamoyltransferase. The induction of the deiminase pathway is thought to mobilize intra- and extracellular reserves of arginine, which is used as a source of adenosine 5'-triphosphate in the absence of respiration.

摘要

铜绿假单胞菌PAO菌株中精氨酸脱亚氨酶途径的三种酶,在从有氧生长条件转变为极低氧张力时会被强烈诱导(50至100倍)。培养基中的精氨酸对诱导并非必需,但会使最大酶水平提高两倍。精氨酸脱亚氨酶(EC 3.5.3.6)、分解代谢型鸟氨酸氨甲酰基转移酶(EC 2.1.3.3)和氨基甲酸激酶(EC 2.7.2.3)这三种酶的诱导似乎是协同的。对分解代谢型鸟氨酸氨甲酰基转移酶的研究最为详细。硝酸盐和亚硝酸盐可替代氧气作为铜绿假单胞菌中的末端电子受体,它们能部分阻止野生型菌株因低氧张力而导致的酶诱导,但对nar(硝酸盐还原酶阴性)突变体则无此作用。发现葡萄糖对脱亚氨酶途径有分解代谢物阻遏作用。一般来说,应激条件,如碳源、能源或磷酸盐源的耗尽,会导致分解代谢型鸟氨酸氨甲酰基转移酶的诱导合成。脱亚氨酶途径的诱导被认为是为了调动细胞内和细胞外的精氨酸储备,在无氧呼吸时精氨酸可作为三磷酸腺苷的来源。

相似文献

1
Regulation of enzyme synthesis in the arginine deiminase pathway of Pseudomonas aeruginosa.
J Bacteriol. 1980 Oct;144(1):159-63. doi: 10.1128/jb.144.1.159-163.1980.
2
Control of enzyme synthesis in the arginine deiminase pathway of Streptococcus faecalis.
J Bacteriol. 1982 Jun;150(3):1085-90. doi: 10.1128/jb.150.3.1085-1090.1982.
3
Enzymes of arginine utilization and their formation in Aeromonas formicans NCIB 9232.
Arch Microbiol. 1982 Dec 3;133(4):295-9. doi: 10.1007/BF00521293.
5
Regulation of the arginine dihydrolase pathway in Clostridium sporogenes.
J Bacteriol. 1977 Aug;131(2):693-5. doi: 10.1128/jb.131.2.693-695.1977.
7
Enzymes of agmatine degradation and the control of their synthesis in Streptococcus faecalis.
J Bacteriol. 1982 Nov;152(2):676-81. doi: 10.1128/jb.152.2.676-681.1982.
9
Sequence analysis and expression of the arginine-deiminase and carbamate-kinase genes of Pseudomonas aeruginosa.
Eur J Biochem. 1989 Jan 15;179(1):53-60. doi: 10.1111/j.1432-1033.1989.tb14520.x.

引用本文的文献

2
MoaB1 Homologs Contribute to Biofilm Formation and Motility by Pseudomonas aeruginosa and Escherichia coli.
J Bacteriol. 2023 May 25;205(5):e0000423. doi: 10.1128/jb.00004-23. Epub 2023 Apr 26.
3
Enhancing curcumin's solubility and antibiofilm activity silica surface modification.
Nanoscale Adv. 2020 Mar 20;2(4):1694-1708. doi: 10.1039/d0na00041h. eCollection 2020 Apr 15.
4
Nutrient Sensing and Biofilm Modulation: The Example of L-arginine in .
Int J Mol Sci. 2022 Apr 15;23(8):4386. doi: 10.3390/ijms23084386.
5
Filling gaps in bacterial catabolic pathways with computation and high-throughput genetics.
PLoS Genet. 2022 Apr 13;18(4):e1010156. doi: 10.1371/journal.pgen.1010156. eCollection 2022 Apr.
8
Use of response surface method for maximizing the production of arginine deiminase by .
Biotechnol Rep (Amst). 2016 Mar 10;10:29-37. doi: 10.1016/j.btre.2016.03.002. eCollection 2016 Jun.
9
Dynamic Response of Pseudomonas putida S12 to Sudden Addition of Toluene and the Potential Role of the Solvent Tolerance Gene trgI.
PLoS One. 2015 Jul 16;10(7):e0132416. doi: 10.1371/journal.pone.0132416. eCollection 2015.
10
Live-cell high resolution magic angle spinning magnetic resonance spectroscopy for analysis of metabolomics.
Biomed Rep. 2013 Sep;1(5):707-712. doi: 10.3892/br.2013.148. Epub 2013 Jul 22.

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
2
Studies on the mechanism of arginine-activated motility in a Pseudomonas strain.
J Gen Microbiol. 1960 Feb;22:10-24. doi: 10.1099/00221287-22-1-10.
3
Catabolism of L-arginine by Pseudomonas aeruginosa.
J Gen Microbiol. 1980 Feb;116(2):381-9. doi: 10.1099/00221287-116-2-381.
4
Mutants of Pseudomonas aeruginosa bblocked in nitrate or nitrite dissimilation.
Genetics. 1971 Apr;67(4):469-82. doi: 10.1093/genetics/67.4.469.
5
Genetics of Pseudomonas.
Bacteriol Rev. 1969 Sep;33(3):419-43. doi: 10.1128/br.33.3.419-443.1969.
7
The occurrence of a catabolic and an anabolic ornithine carbamoyltransferase in Pseudomonas.
Biochim Biophys Acta. 1967 May 16;139(1):91-7. doi: 10.1016/0005-2744(67)90115-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验