iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.
AVT-Biochemical Engineering, RWTH Aachen University, Aachen, Germany.
Appl Environ Microbiol. 2020 May 19;86(11). doi: 10.1128/AEM.03038-19.
Obligate aerobic organisms rely on a functional electron transport chain for energy conservation and NADH oxidation. Because of this essential requirement, the genes of this pathway are likely constitutively and highly expressed to avoid a cofactor imbalance and energy shortage under fluctuating environmental conditions. We here investigated the essentiality of the three NADH dehydrogenases of the respiratory chain of the obligate aerobe VLB120 and the impact of the knockouts of corresponding genes on its physiology and metabolism. While a mutant lacking all three NADH dehydrogenases seemed to be nonviable, the single or double knockout mutant strains displayed no, or only a weak, phenotype. Only the mutant deficient in both type 2 dehydrogenases showed a clear phenotype with biphasic growth behavior and a strongly reduced growth rate in the second phase. In-depth analyses of the metabolism of the generated mutants, including quantitative physiological experiments, transcript analysis, proteomics, and enzyme activity assays revealed distinct responses to type 2 and type 1 dehydrogenase deletions. An overall high metabolic flexibility enables to cope with the introduced genetic perturbations and maintain stable phenotypes, likely by rerouting of metabolic fluxes. This metabolic adaptability has implications for biotechnological applications. While the phenotypic robustness is favorable in large-scale applications with inhomogeneous conditions, the possible versatile redirecting of carbon fluxes upon genetic interventions can thwart metabolic engineering efforts. While has the capability for high metabolic activity and the provision of reduced redox cofactors important for biocatalytic applications, exploitation of this characteristic might be hindered by high, constitutive activity of and, consequently, competition with the NADH dehydrogenases of the respiratory chain. The in-depth analysis of NADH dehydrogenase mutants of VLB120 presented here provides insight into the phenotypic and metabolic response of this strain to these redox metabolism perturbations. This high degree of metabolic flexibility needs to be taken into account for rational engineering of this promising biotechnological workhorse toward a host with a controlled and efficient supply of redox cofactors for product synthesis.
需氧生物依赖于功能正常的电子传递链来进行能量守恒和 NADH 氧化。由于这个基本要求,该途径的基因可能会持续且高度表达,以避免在波动的环境条件下发生辅助因子失衡和能量短缺。我们在这里研究了严格需氧菌 VLB120 的呼吸链中三种 NADH 脱氢酶的必要性,以及敲除相应基因对其生理和代谢的影响。虽然缺乏三种 NADH 脱氢酶的突变体似乎无法存活,但单或双敲除突变株没有或只有微弱的表型。只有缺乏两种类型 2 脱氢酶的突变体表现出明显的表型,表现为双相生长行为和第二阶段生长速率明显降低。对生成的突变体的代谢进行深入分析,包括定量生理实验、转录分析、蛋白质组学和酶活性测定,揭示了对 2 型和 1 型脱氢酶缺失的不同反应。总的来说,高代谢灵活性使 能够应对引入的遗传干扰并保持稳定的表型,可能通过代谢通量的重新路由来实现。这种代谢适应性对生物技术应用具有重要意义。虽然表型稳健性在具有不均匀条件的大规模应用中是有利的,但遗传干预后碳通量的可能多样化重定向可能会破坏代谢工程的努力。虽然 具有高代谢活性和提供生物催化应用中重要的还原氧化辅助因子的能力,但由于 和 的高组成活性,以及与呼吸链 NADH 脱氢酶的竞争,可能会阻碍对其特征的利用。本文对 VLB120 的 NADH 脱氢酶突变体的深入分析,为该菌株对这些氧化还原代谢扰动的表型和代谢反应提供了深入的了解。这种高度的代谢灵活性需要在对这种有前途的生物技术工作马进行理性工程设计时加以考虑,以实现对宿主的控制和有效的氧化还原辅助因子供应,从而促进产物合成。