Suppr超能文献

低温下鱿鱼轴突中存在一群休眠钠通道的证据。

Evidence for a population of sleepy sodium channels in squid axon at low temperature.

作者信息

Matteson D R, Armstrong C M

出版信息

J Gen Physiol. 1982 May;79(5):739-58. doi: 10.1085/jgp.79.5.739.

Abstract

We have studied the effects of temperature changes on Na currents in squid giant axons. Decreases in temperature in the 15-1 degrees C range decrease peak Na current with a Q10 of 2.2. Steady state currents, which are tetrodotoxin sensitive and have the same reversal potential as peak currents, are almost unaffected by temperature changes. After removal of inactivation by pronase treatment, steady state current amplitude has a Q10 of 2.3. Na currents generated at large positive voltages sometimes exhibit a biphasic activation pattern. The first phase activates rapidly and partially inactivates and is followed by a secondary slow current increase that lasts several milliseconds. Peak Na current amplitude can be increased by delivering large positive prepulses, an effect that is more pronounced at low temperatures. The slow activation phase is eliminated after a positive prepulse. The results are consistent with the hypothesis that there are two forms of the Na channel: (a) rapidly activating channels that completely inactivate, and (b) slowly activating "sleepy" channels that inactivate slowly if at all. Some fast channels are assumed to be converted to sleepy channels by cooling, possibly because of a phase transition in the membrane. The existence of sleepy channels complicates the determination of the Q10 of gating parameters and single-channel conductance.

摘要

我们研究了温度变化对枪乌贼巨大轴突中钠电流的影响。在15 - 1℃范围内温度降低会使钠电流峰值减小,Q10为2.2。稳态电流对河豚毒素敏感,且与电流峰值具有相同的反转电位,几乎不受温度变化的影响。用链霉蛋白酶处理去除失活后,稳态电流幅度的Q10为2.3。在大的正电压下产生的钠电流有时呈现双相激活模式。第一阶段快速激活并部分失活,随后是持续数毫秒的次级缓慢电流增加。通过施加较大的正预脉冲可以增加钠电流峰值幅度,这种效应在低温下更明显。正预脉冲后慢激活阶段消失。这些结果与以下假设一致:存在两种形式的钠通道:(a) 快速激活并完全失活的通道,以及 (b) 缓慢激活的“休眠”通道,若有失活也非常缓慢。一些快速通道被认为通过冷却转变为休眠通道,这可能是由于膜中的相变。休眠通道的存在使门控参数和单通道电导的Q10的测定变得复杂。

相似文献

1
Evidence for a population of sleepy sodium channels in squid axon at low temperature.
J Gen Physiol. 1982 May;79(5):739-58. doi: 10.1085/jgp.79.5.739.
5
The effect of scorpion venoms on the sodium currents of the squid giant axon.
J Physiol. 1980 Nov;308:479-99. doi: 10.1113/jphysiol.1980.sp013484.
7
Slow inactivation of the sodium conductance in squid giant axons. Pronase resistance.
J Physiol. 1978 Oct;283:1-21. doi: 10.1113/jphysiol.1978.sp012485.
9
Fractionation of the asymmetry current in the squid giant axon into inactivating and non-inactivating components.
Proc R Soc Lond B Biol Sci. 1982 Jun 22;215(1200):375-89. doi: 10.1098/rspb.1982.0048.
10
Gating current and potassium channels in the giant axon of the squid.
Biophys J. 1980 Mar;29(3):485-92. doi: 10.1016/S0006-3495(80)85147-2.

引用本文的文献

1
Interdependence of cellular and network properties in respiratory rhythmogenesis.
bioRxiv. 2023 Nov 2:2023.10.30.564834. doi: 10.1101/2023.10.30.564834.
3
The Impact of Frequency Scale on the Response Sensitivity and Reliability of Cortical Neurons to 1/f Input Signals.
Front Cell Neurosci. 2019 Jul 11;13:311. doi: 10.3389/fncel.2019.00311. eCollection 2019.
4
Voltage gating by molecular subunits of Na+ and K+ ion channels: higher-dimensional cubic kinetics, rate constants, and temperature.
J Neurophysiol. 2015 Jun 1;113(10):3759-77. doi: 10.1152/jn.00551.2014. Epub 2015 Apr 1.
5
Warm body temperature facilitates energy efficient cortical action potentials.
PLoS Comput Biol. 2012;8(4):e1002456. doi: 10.1371/journal.pcbi.1002456. Epub 2012 Apr 12.
6
Mechanosensitivity of Nav1.5, a voltage-sensitive sodium channel.
J Physiol. 2010 Dec 15;588(Pt 24):4969-85. doi: 10.1113/jphysiol.2010.199034. Epub 2010 Nov 1.
7
Mechanisms and distribution of ion channels in retinal ganglion cells: using temperature as an independent variable.
J Neurophysiol. 2010 Mar;103(3):1357-74. doi: 10.1152/jn.00123.2009. Epub 2010 Jan 6.
8
Tail currents in the myelinated axon of Xenopus laevis suggest a two-open-state Na channel.
Biophys J. 1997 Jul;73(1):179-85. doi: 10.1016/S0006-3495(97)78058-5.
9
Depolarization-induced slowing of Ca2+ channel deactivation in squid neurons.
Biophys J. 1997 Apr;72(4):1607-21. doi: 10.1016/S0006-3495(97)78807-6.
10
Slow and incomplete inactivations of voltage-gated channels dominate encoding in synthetic neurons.
Biophys J. 1993 Sep;65(3):1196-206. doi: 10.1016/S0006-3495(93)81153-6.

本文引用的文献

2
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J Physiol. 1952 Aug;117(4):500-44. doi: 10.1113/jphysiol.1952.sp004764.
3
Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices.
J Physiol. 1980 Aug;305:171-95. doi: 10.1113/jphysiol.1980.sp013357.
4
Survival of K+ permeability and gating currents in squid axons perfused with K+-free media.
J Gen Physiol. 1980 Jan;75(1):61-78. doi: 10.1085/jgp.75.1.61.
5
The effect of scorpion venoms on the sodium currents of the squid giant axon.
J Physiol. 1980 Nov;308:479-99. doi: 10.1113/jphysiol.1980.sp013484.
6
Interaction of deoxycholate with the sodium channel of squid axon membranes.
J Gen Physiol. 1980 Sep;76(3):355-79. doi: 10.1085/jgp.76.3.355.
7
Temperature "breaks" in Arrhenius plots: a thermodynamic consequence of a phase change.
J Theor Biol. 1971 Apr;31(1):47-51. doi: 10.1016/0022-5193(71)90120-2.
8
Evidence for two types of sodium conductance in axons perfused with sodium fluoride solution.
J Physiol. 1970 Dec;211(3):653-78. doi: 10.1113/jphysiol.1970.sp009298.
10
Destruction of sodium conductance inactivation in squid axons perfused with pronase.
J Gen Physiol. 1973 Oct;62(4):375-91. doi: 10.1085/jgp.62.4.375.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验