Suppr超能文献

单个神经元直方图的量化、平滑处理及置信限

Quantification, smoothing, and confidence limits for single-units' histograms.

作者信息

Abeles M

出版信息

J Neurosci Methods. 1982 May;5(4):317-25. doi: 10.1016/0165-0270(82)90002-4.

Abstract

In this article the relationships among firing rate, probability of firing and counts per bin are examined. It is suggested that PSTHs, autocorrelations and crosscorrelations of neuronal activity should all be expressed in units of firing rates (spikes/s), since the values obtained by such scaling are independent of bin size and of total time of measurement. A simple method for these histograms is described. Methods to compute confidence limits for PSTHs, autocorrelations and crosscorrelations are suggested. The computations are based on the null hypothesis that the spike train(s) is (are) the realization of (independent) Poisson-point process(es). The validity and the limitations of these computations methods, when applied to spike trains, are discussed. Methods to smooth out random fluctuation with little distortion of the histogram's shape are described. It is suggested that one can minimize the distortion of the histogram in the time-domain and in the frequency-domain by using a bell-shaped bin whose center point slides continuously along the histogram. The article aims at giving the potential user of the methods some insight for the meaning of the formulae. It describes in detail how the methods are applied in practice and illustrates each method by using real data from single-unit recordings.

摘要

本文研究了放电率、放电概率和每个时间间隔的计数之间的关系。研究表明,神经元活动的脉冲序列直方图(PSTHs)、自相关和互相关都应以放电率(脉冲数/秒)为单位来表示,因为通过这种缩放获得的值与时间间隔大小和总测量时间无关。本文描述了一种用于这些直方图的简单方法。文中还提出了计算PSTHs、自相关和互相关置信限的方法。这些计算基于零假设,即脉冲序列是(独立)泊松点过程的实现。本文讨论了这些计算方法应用于脉冲序列时的有效性和局限性。文中描述了在几乎不扭曲直方图形状的情况下平滑随机波动的方法。研究表明,通过使用中心点沿直方图连续滑动的钟形时间间隔,可以在时域和频域中最小化直方图的失真。本文旨在让该方法的潜在用户对公式的含义有所了解。它详细描述了这些方法在实际中的应用,并通过使用单单元记录的真实数据来说明每种方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验