Suppr超能文献

分组生存数据的回归分析及其在乳腺癌数据中的应用

Regression analysis of grouped survival data with application to breast cancer data.

作者信息

Prentice R L, Gloeckler L A

出版信息

Biometrics. 1978 Mar;34(1):57-67.

PMID:630037
Abstract

Use of the proportional hazards regression model (Cox 1972) substantially liberalized the analysis of censored survival data with covariates. Available procedures for estimation of the relative risk parameter, however, do not adequately handle grouped survival data, or large data sets with many tied failure times. The grouped data version of the proportional hazards model is proposed here for such estimation. Asymptotic likelihood results are given, both for the estimation of the regression coefficient and the survivor function. Some special results are given for testing the hypothesis of a zero regression coefficient which leads, for example, to a generalization of the log-rank test for the comparison of several survival curves. Application to breast cancer data, from the National Cancer Institute-sponsored End Results Group, indicates that previously noted race differences in breast cancer survival times are explained to a large extent by differences in disease extent and other demographic characteristics at diagnosis.

摘要

比例风险回归模型(Cox,1972)的使用极大地放宽了对带有协变量的删失生存数据的分析。然而,现有的相对风险参数估计方法并不能充分处理分组生存数据,或存在许多相同失效时间的大数据集。本文提出了比例风险模型的分组数据版本用于此类估计。给出了回归系数估计和生存函数估计的渐近似然结果。给出了一些用于检验回归系数为零的假设的特殊结果,例如,这导致了用于比较多条生存曲线的对数秩检验的推广。对美国国立癌症研究所资助的最终结果小组的乳腺癌数据的应用表明,先前观察到的乳腺癌生存时间的种族差异在很大程度上可由疾病程度和诊断时的其他人口统计学特征差异来解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验