Hall J E, Vodyanoy I, Balasubramanian T M, Marshall G R
Biophys J. 1984 Jan;45(1):233-47. doi: 10.1016/S0006-3495(84)84151-X.
Alamethicin, a 20-amino acid peptide, has been studied for a number of years as a model for voltage-gated channels. Recently both the x-ray structure of alamethicin in crystal and an NMR solution structure have been published (Fox and Richards, 1982. Bannerjee et al., 1983). Both structures show that the amino end of the molecule forms a stable alpha-helix nine or 10 residues in length and that the COOH-terminal ends exhibits a variable hydrogen bonding pattern. We have used synthetic analogues of alamethicin to test various hypotheses of its mode of action. As a result of these studies we propose a channel structure in which the COOH-terminal residues bond together as a beta-barrel, leaving the alpha- helices free to rotate under the influence of the electric field and gate the channel. Though the number of monomers per channel varies with experimental conditions, the gating charge per monomer stays close to that expected from an alpha-helical gate. We can also alter the sign of the voltage which turns on a channel by varying the charge on the alamethicin analogue. Channels are always slightly cation-selective even though formed by monomers with negative, positive, or zero formal charge. Channels are less stable in low ionic strength solutions than high. Finally, alamethicin conductance parameters vary systematically with changes in membrane thickness. We show how these results and others in the literature can be explained by a fairly detailed structural model. The model can be easily generalized to a form more suited to high molecular weight single-peptide-chain proteins.
短杆菌肽A是一种由20个氨基酸组成的肽,作为电压门控通道的模型已被研究多年。最近,短杆菌肽A在晶体中的X射线结构和核磁共振溶液结构均已发表(福克斯和理查兹,1982年。班纳吉等人,1983年)。两种结构均表明,该分子的氨基末端形成一个长度为9或10个残基的稳定α螺旋,而羧基末端呈现出可变的氢键模式。我们使用短杆菌肽A的合成类似物来检验其作用模式的各种假说。这些研究的结果使我们提出了一种通道结构,其中羧基末端残基作为β桶状结构结合在一起,使α螺旋在电场的影响下能够自由旋转并控制通道的开闭。尽管每个通道中单体的数量随实验条件而变化,但每个单体的门控电荷与α螺旋门控预期的电荷相近。我们还可以通过改变短杆菌肽类似物上的电荷来改变开启通道的电压的正负号。即使通道由带负电荷、正电荷或零净电荷的单体形成,它们也总是具有轻微的阳离子选择性。通道在低离子强度溶液中比在高离子强度溶液中更不稳定。最后,短杆菌肽的电导参数随膜厚度的变化而系统地变化。我们展示了如何用一个相当详细的结构模型来解释这些结果以及文献中的其他结果。该模型可以很容易地推广到更适合高分子量单肽链蛋白的形式。