Suppr超能文献

通过碳-13和磷-31核磁共振研究大肠杆菌无庚糖突变体的脂多糖的结构和金属结合特性。

Structure and metal-binding properties of lipopolysaccharides from heptoseless mutants of Escherichia coli studied by 13C and 31P nuclear magnetic resonance.

作者信息

Strain S M, Fesik S W, Armitage I M

出版信息

J Biol Chem. 1983 Nov 25;258(22):13466-77.

PMID:6358205
Abstract

The structure and metal-binding properties of lipopolysaccharides (LPS) from heptoseless mutants of Escherichia coli were studied by 13C and 31P NMR techniques. Carbon-13 NMR spectra were used to determine the linkages and configurations of the saccharide backbone and the types and locations of fatty acyl groups in E. coli LPS. Resonance assignments for native LPS were made by chemical shift correlation with model compounds, deacylated LPS, lipid A, deacylated lipid A, and fatty acids released from LPS by mild alkaline hydrolysis. The 3-deoxy-D-manno-octulosonate (KDO) disaccharide was tentatively assigned the structure KDO alpha 2 leads to 5KDO alpha 2 leads to. The presence of amide- and ester-linked 3-hydroxy and 3-acyloxy fatty acids in native LPS was confirmed directly from the 13C spectrum and evidence is presented for a labile acyl ester at C-3' (GlcNII) of the lipid A moiety. A significant finding was that the KDO disaccharide is linked to the C-6' position of the lipid A moiety, rather than C-3', as previously reported. The effects of binding Ca2+, Cd2+, Yb3+, Gd3+, and La3+ on the 31P NMR spectrum of LPS indicated that the glycosidic diphosphate moiety participates in a high affinity metal-binding site.

摘要

利用碳 - 13(13C)和磷 - 31(31P)核磁共振技术研究了大肠杆菌无庚糖突变体中脂多糖(LPS)的结构和金属结合特性。碳 - 13核磁共振谱用于确定大肠杆菌LPS中糖骨架的连接方式和构型以及脂肪酰基的类型和位置。通过与模型化合物、脱酰基LPS、脂质A、脱酰基脂质A以及通过温和碱性水解从LPS释放的脂肪酸进行化学位移关联,对天然LPS进行了共振归属。初步确定3 - 脱氧 - D - 甘露糖辛酮酸(KDO)二糖的结构为KDOα2→5KDOα2→。直接从13C谱证实了天然LPS中存在酰胺键和酯键连接的3 - 羟基和3 - 酰氧基脂肪酸,并提供了脂质A部分C - 3'(GlcNII)处不稳定酰基酯的证据。一个重要发现是,KDO二糖与脂质A部分的C - 6'位置相连,而不是如先前报道的与C - 3'位置相连。结合Ca2 +、Cd2 +、Yb3 +、Gd3 +和La3 +对LPS的31P核磁共振谱的影响表明,糖苷二磷酸部分参与了一个高亲和力的金属结合位点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验