Knesaurek K, Spaventi S
Eur J Nucl Med. 1984;9(6):254-6. doi: 10.1007/BF00803245.
The importance of comparing various deconvolution techniques on real patient data lies in the fact that there are two different approaches to that problem. One, which prefers general-purpose techniques, using a matrix algorithm (MA) and fast-Fourier transformation (FFT) with various smoothings, filters, etc., and another which prefers deconvolution techniques which have been modified for the particular application. The modification may be in requiring well defined input or assuming a smooth result of deconvolution. The aim of this paper is to compare the general-purpose deconvolution technique mostly used in analyzing patient data in nuclear medicine using MA and FFT with deconvolution based on Laplace transformation (LT). They have been compared on real patient data renograms in 36 cases. The comparison shows that although the LT technique requires a well defined input and for that reason needs more computing time than the FFT and MA technique, it gives impulse response functions (IRF) without negative values or with negligible ones. Even more, using LT, which has been incorporated in a model of distribution and transport of tracer, without taking blood samples one can assess some other useful clinical parameters such as inverse value of clearance time constant (ICTC) and effective renal plasma flow (ERPF).
在真实患者数据上比较各种反卷积技术的重要性在于,解决该问题有两种不同的方法。一种倾向于通用技术,使用矩阵算法(MA)和带有各种平滑、滤波等操作的快速傅里叶变换(FFT);另一种则倾向于针对特定应用进行修改的反卷积技术。这种修改可能在于要求明确的输入或假设反卷积结果是平滑的。本文的目的是将核医学中分析患者数据时最常用的基于MA和FFT的通用反卷积技术与基于拉普拉斯变换(LT)的反卷积技术进行比较。它们在36例真实患者数据肾图上进行了比较。比较结果表明,尽管LT技术需要明确的输入,因此比FFT和MA技术需要更多的计算时间,但它给出的脉冲响应函数(IRF)没有负值或负值可忽略不计。更重要的是,将LT纳入示踪剂分布和运输模型中,无需采集血样就可以评估一些其他有用的临床参数,如清除时间常数的倒数(ICTC)和有效肾血浆流量(ERPF)。