Suppr超能文献

Spindle disturbances in mammalian cells. I. Changes in the quantity of free sulfhydryl groups in relation to survival and C-mitosis in V79 Chinese hamster cells after treatment with colcemid, diamide, carbaryl and methyl mercury.

作者信息

Onfelt A

出版信息

Chem Biol Interact. 1983 Sep 1;46(2):201-17. doi: 10.1016/0009-2797(83)90029-7.

Abstract

Asynchronously growing V79 Chinese hamster cells were treated with colcemid, diamide, carbaryl and methyl mercury, which are all known to be spindle disturbing agents. For each compound the dose response for c-mitosis, survival and level of free sulfhydryl groups was investigated under comparable conditions. Diamide, carbaryl and methyl were all found to give a significant increase of c-mitosis at a dose giving a decrease of non-protein sulfhydryl groups (NPSH, mainly glutathione) of 30-40% suggesting that a decrease of this magnitude may have a predictive value for spindle disturbances. Despite this similarity at concentrations close to the respective thresholds it was found that the c-mitotic activity at higher concentrations was not a simple function of average NPSH decrease. Diamide, which rapidly oxidizes glutathione to glutathione disulfide, was a less efficient c-mitotic agent than carbaryl and methyl mercury in relation to average NPSH decrease at higher concentrations. Protein bound sulfhydryl groups (PSH) were not significantly affected with diamide and carbaryl at their lowest c-mitotic concentrations while methyl mercury caused a significant decrease already at concentrations below the lowest c-mitotic concentration. With colcemid a significant decrease of average NPSH (14%) and PSH (12%) was observed only with concentrations giving close to 100% c-mitotic cells. Concentrations giving more than 20% c-mitosis gave a pronounced decrease of survival with carbaryl, diamide and methyl mercury while no toxic effects were obtained with colcemid, not even with concentrations giving close to 100% c-mitosis. Carbaryl, diamide and methyl mercury caused increased glutathione peroxidase activity indicating that these compounds cause increased lipid peroxidation. The possible connection between peroxidative damage of membranes and c-mitosis is discussed.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验