Suppr超能文献

从巴斯德到米切尔:生物能量学的百年历程

From Pasteur to Mitchell: a hundred years of bioenergetics.

作者信息

Racker E

出版信息

Fed Proc. 1980 Feb;39(2):210-5.

PMID:6444390
Abstract

The discovery in 1861 by Louis Pasteur that more yeast is formed aerobically than anaerobically per gram of glucose was the first clue to the difference in efficiency of glycolysis and oxidative phosphorylation. During the first half of the 20th century the pathway of glycolysis was untraveled. Individual enzymes and cofactors were isolated and characterized. A reconstituted system of all enzymes and cofactors catalyzed steady-state glycolysis, provided an appropriate ATPase was added. The need for an ATPase, clearly demonstrated in 1945 by Otto Meyerhof, remains an important aspect of glycolysis that has been sorely neglected by textbooks. The coupling of oxidation and phosphorylation and the formation of the high-energy intermediate 1,3-diphosphoglycerate, discovered by Otto Warburg, are the key reactions of glycolysis. A high-energy intermediate formed during this process was identified as a thiolester. Early concepts of the mechanism of oxidative phosphorylation based on this model led to some frustrating and confusing years of search for high-energy intermediates. Important contributions from the laboratories of Boyer, Cohn, Chance, Green, Lardy, and Lehninger elucidated the properties of the mitochondrial process. Then Peter Mitchell proposed in 1961, 100 years after the publication by Pasteur, that the "high-energy intermediate" is an electrochemical proton gradient generated by the electron transport chain and utilized by a proton turbine (the mitochondrial ATPase complex) to generate ATP. This concept is now widely accepted. Several problems remain to be solved. How are the protons translocated during electron transport? How many protons per site? What is the mechanism of ATP generation during proton flux via the mitochondrial ATPase?

摘要

1861年,路易·巴斯德发现,每克葡萄糖在有氧条件下形成的酵母比无氧条件下更多,这是糖酵解和氧化磷酸化效率差异的首个线索。在20世纪上半叶,糖酵解途径尚不明晰。各种酶和辅助因子被分离并加以表征。只要添加合适的ATP酶,由所有酶和辅助因子组成的重构系统就能催化糖酵解达到稳态。1945年奥托·迈尔霍夫明确证实了对ATP酶的需求,这仍是糖酵解的一个重要方面,但教科书却严重忽视了这一点。奥托·瓦尔堡发现的氧化与磷酸化的偶联以及高能中间体1,3 - 二磷酸甘油酸的形成,是糖酵解的关键反应。在此过程中形成的一种高能中间体被确定为硫酯。基于该模型的早期氧化磷酸化机制概念,导致了数年寻找高能中间体的过程令人沮丧且困惑。博耶、科恩、钱斯、格林、拉迪和莱宁格等实验室做出了重要贡献,阐明了线粒体过程的特性。然后,在巴斯德发表相关成果100年后的1961年,彼得·米切尔提出,“高能中间体”是由电子传递链产生的电化学质子梯度,并由质子涡轮(线粒体ATP酶复合体)利用来生成ATP。这一概念现已被广泛接受。仍有几个问题有待解决。电子传递过程中质子是如何转运的?每个位点有多少个质子?质子通过线粒体ATP酶流动时产生ATP的机制是什么?

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验