Hines M, Blum J J
Biophys J. 1984 Nov;46(5):559-65. doi: 10.1016/S0006-3495(84)84054-0.
Previously (Hines, M., and J.J. Blum 1983, Biophys. J., 41:67-79), a method was developed that allowed one to compute curvature and twist for a three-dimensional sliding filament model. In that formalism it was difficult to specify the shear and bending moments arising from moment-bearing interfilament links such as fixed 5-6 bridges or dyneins. Euler's equation offers a straightforward method for computing these bending and shear moments when the potential energy stored in the links as a function of axonemal shape is specified. We used this approach to examine the effect of 5-6 bridges on curvature and twist for several distributions of internal shear moments. Twist changes the angle that a link makes with a doublet and thus in some circumstances may reduce the potential energy stored in those links. Twist is a second-order effect proportional to the square of the distance between an outer doublet and the neutral axis. Fixed links will not generate twist if they are symmetrically located around the axoneme.
此前(海因斯,M.,以及J.J. 布卢姆,1983年,《生物物理学杂志》,41:67 - 79),开发了一种方法,可用于计算三维滑动细丝模型的曲率和扭转。在该形式体系中,很难确定由诸如固定的5 - 6桥或动力蛋白等承载力矩的丝间连接产生的剪切力和弯矩。当指定连接中存储的势能作为轴丝形状的函数时,欧拉方程提供了一种计算这些弯矩和剪切力的直接方法。我们使用这种方法来研究5 - 6桥对几种内部剪切力分布的曲率和扭转的影响。扭转会改变连接与双联体形成的角度,因此在某些情况下可能会降低存储在这些连接中的势能。扭转是一种二阶效应,与外双联体和中性轴之间距离的平方成正比。如果固定连接围绕轴丝对称定位,则不会产生扭转。