Hwang S B, Korenbrot J I, Stoeckenius W
Biochim Biophys Acta. 1978 May 18;509(2):300-17. doi: 10.1016/0005-2736(78)90049-4.
The photovoltaic properties of bacteriorhodopsin molecules and their photochemical intermediates have been investigated in an experimental cell consisting of multilayered films of highly oriented, dry fragments of purple membrane and lipid sandwiched between two metal (Pd) electrodes. The electrical time constant of these sandwich cells containing between 5 and 30 layers is less than 10(-5) S. Bright illumination of these cells with actinic flashes of approximately 1 ms duration generates transient photovoltages. These photovoltages, which make the extracellular surface of purple membrane positive with respect to the intracellular surface, follow the time course of the flash with no detectable latency. The amplitude of the photovoltages increases linearly with light intensity and their action spectrum matches the absorption spectrum of the light-adapted state of bacteriorhodopsin, BR570. In these dry multilayer cells, the slow photointermediates of bacteriorhodopsin, M412, N520 and O640 are long lived. Illumination of the sandwich cells with long duration (200 ms) pulses of light results, therefore, in the formation of photomixtures containing all these slow photointermediates. Flash illumination of the sandwich cells immediately following the conditioning pulse produces photovoltages whose action spectra match the absorption spectra of the M412 and N520 photointermediates. The M412 photovoltages, like the BR570 photovoltages, follow the time course of the actinic flash with no detectable latency and increase in amplitude linearly with light intensity. But, unlike the BR570 photovoltage, the M412, N520 and O640 photovoltages make the extracellular surface of purple membrane negative with respect to the intracellular surface. Through the of their specific photovoltaic signals, M412 and N520 are shown to be kinetically distinct photointermediates of bacteriorhodopsin. Detection of fast photovoltages with these characteristics in the absence of any ionic solution, and in parallel with spectrophotometric changes, suggest that they arise from charge displacements in the bacteriorhodopsin molecules and their photointermediates as they undergo photochemical conversion in response to the absorption of photons.
在一个由夹在两个金属(钯)电极之间的高度取向的紫色膜干燥碎片和脂质的多层膜组成的实验池中,研究了细菌视紫红质分子及其光化学中间体的光伏特性。这些包含5到30层的夹心电池的电时间常数小于10^(-5)秒。用持续时间约为1毫秒的光化闪光对这些电池进行强光照射会产生瞬时光电压。这些使紫色膜细胞外表面相对于细胞内表面呈正电的光电压,跟随闪光的时间进程,没有可检测到的延迟。光电压的幅度随光强度线性增加,其作用光谱与细菌视紫红质BR570的光适应状态的吸收光谱匹配。在这些干燥的多层电池中,细菌视紫红质的慢光中间体M412、N520和O640寿命较长。因此,用持续时间长(200毫秒)的光脉冲照射夹心电池会导致形成包含所有这些慢光中间体的光混合物。在调节脉冲之后立即对夹心电池进行闪光照射会产生其作用光谱与M412和N520光中间体的吸收光谱匹配的光电压。M412光电压与BR570光电压一样,跟随光化闪光的时间进程,没有可检测到的延迟,并且幅度随光强度线性增加。但是,与BR570光电压不同,M412、N520和O640光电压使紫色膜细胞外表面相对于细胞内表面呈负电。通过它们特定的光伏信号,表明M412和N520是细菌视紫红质动力学上不同的光中间体。在没有任何离子溶液的情况下检测到具有这些特征的快速光电压,并与分光光度变化同时进行,表明它们是由于细菌视紫红质分子及其光中间体在响应光子吸收进行光化学转化时的电荷位移而产生的。