Suppr超能文献

Electrotonic properties of neurons: steady-state compartmental model.

作者信息

Perkel D H, Mulloney B

出版信息

J Neurophysiol. 1978 May;41(3):621-39. doi: 10.1152/jn.1978.41.3.621.

Abstract
  1. If a neuron is represented by a network of resistively coupled isopotential regions, the passive flow of current in its dendritic structure and soma is described by a matrix differential equation. The matrix elements are defined in terms of membrane resistances and capacitances and of coupling resistances between adjoining regions. 2. A uniform cylidrical dendrite can be represented by a chain of identical regions. In this case, a closed-form mathematical expression is derived for the voltage attenuation factor of the dendrite at steady state in terms of the ratio of membrane resistance to coupling resistance. A numerical method is given to determine the coupling resistances, which in turn yield a specified attenuation factor. Related expressions are given for a dendrite coupled to a soma. Formulas are also derived for the input resistance in these configurations. 3. For more complicated neuronal structures, matrix manipulations are described which yield values for input resistances in all regions, attenuation factors between all pairs of regions, and values of applied voltages necessary to attain specified steady-state potentials. 4. Dynamic solutions to the differential equation provide voltage transients (PSPs). Comparison of the shape paramenters of these transients with those of experimental or cable-theoretical PSPs establishes the number of regions necessary to achieve a given degree of approximation to the transients predicted by cable theory.
摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验