Suppr超能文献

使用泊松回归模型进行比率分析。

The analysis of rates using Poisson regression models.

作者信息

Frome E L

出版信息

Biometrics. 1983 Sep;39(3):665-74.

PMID:6652201
Abstract

Models are considered in which the underlying rate at which events occur can be represented by a regression function that describes the relation between the predictor variables and the unknown parameters. Estimates of the parameters can be obtained by means of iteratively reweighted least squares (IRLS). When the events of interest follow the Poisson distribution, the IRLS algorithm is equivalent to using the method of scoring to obtain maximum likelihood (ML) estimates. The general Poisson regression models include log-linear, quasilinear and intrinsically nonlinear models. The approach considered enables one to concentrate on describing the relation between the dependent variable and the predictor variables through the regression model. Standard statistical packages that support IRLS can then be used to obtain ML estimates, their asymptotic covariance matrix, and diagnostic measures that can be used to aid the analyst in detecting outlying responses and extreme points in the model space. Applications of these methods to epidemiologic follow-up studies with the data organized into a life-table type of format are discussed. The method is illustrated by using a nonlinear model, derived from the multistage theory of carcinogenesis, to analyze lung cancer death rates among British physicians who were regular cigarette smokers.

摘要

考虑这样一些模型,其中事件发生的潜在速率可用一个回归函数来表示,该回归函数描述了预测变量与未知参数之间的关系。参数估计可通过迭代加权最小二乘法(IRLS)获得。当感兴趣的事件服从泊松分布时,IRLS算法等同于使用评分法来获得最大似然(ML)估计。一般的泊松回归模型包括对数线性、拟线性和固有非线性模型。所考虑的方法使人们能够专注于通过回归模型描述因变量与预测变量之间的关系。然后可以使用支持IRLS的标准统计软件包来获得ML估计、其渐近协方差矩阵以及可用于帮助分析师检测模型空间中异常响应和极值点的诊断度量。讨论了这些方法在流行病学随访研究中的应用,数据被整理成寿命表格式。通过使用一个源自癌症发生多阶段理论的非线性模型来分析经常吸烟的英国医生的肺癌死亡率,对该方法进行了说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验