Swanson G D, Sherrill D L
J Appl Physiol Respir Environ Exerc Physiol. 1983 Dec;55(6):1936-41. doi: 10.1152/jappl.1983.55.6.1936.
A mathematical model has been implemented for evaluation of methods for estimating breath-to-breath alveolar gas exchange during exercise in humans. This model includes a homogeneous alveolar gas exchange compartment, a dead space compartment, and tissue spaces for CO2 (alveolar and dead space). The dead space compartment includes a mixing portion surrounded by tissue and an unmixed (slug flow) portion which is partitioned between anatomical and apparatus contributions. A random sinusoidal flow pattern generates a breath-to-breath variation in pulmonary stores. The Auchincloss algorithm for estimating alveolar gas exchange (Auchincloss et al., J. Appl. Physiol. 21: 810-818, 1966) was applied to the model, and the results were compared with the simulated gas exchange. This comparison indicates that a compensation for changes in pulmonary stores must include factors for alveolar gas concentration change as well as alveolar volume change and thus implies the use of end-tidal measurements. Although this algorithm yields reasonable estimates of breath-to-breath alveolar gas exchange, it does not yield a "true" indirect measurement because of inherent error in the estimation of a homogeneous alveolar gas concentration at the end of expiration.
已建立一个数学模型,用于评估人体运动期间逐次呼吸肺泡气体交换的估计方法。该模型包括一个均匀的肺泡气体交换隔室、一个死腔隔室以及二氧化碳的组织间隙(肺泡和死腔)。死腔隔室包括被组织包围的混合部分和未混合(塞状流)部分,后者在解剖学和仪器贡献之间进行划分。随机正弦流模式会在肺储存中产生逐次呼吸变化。将用于估计肺泡气体交换的奥金克洛斯算法(Auchincloss等人,《应用生理学杂志》21: 810 - 818,1966)应用于该模型,并将结果与模拟的气体交换进行比较。这种比较表明,对肺储存变化的补偿必须包括肺泡气体浓度变化以及肺泡容积变化的因素,因此意味着要使用潮气末测量。尽管该算法能对逐次呼吸肺泡气体交换做出合理估计,但由于呼气末均匀肺泡气体浓度估计中存在固有误差,它并不能得出“真实”的间接测量结果。