Suppr超能文献

Evidence for the glycoprotein nature of retina glycogen.

作者信息

Aon M A, Curtino J A

出版信息

Eur J Biochem. 1984 May 2;140(3):557-66. doi: 10.1111/j.1432-1033.1984.tb08138.x.

Abstract

Incubation of a bovine retina membrane preparation with micromolar amounts of UDP-[14C]glucose resulted in the incorporation of [14C]glucose into endogenous (1----4)-alpha-glucan, insoluble in trichloroacetic acid, and acid-soluble ethanol-insoluble glycogen. The trichloroacetic-acid-insoluble glucan fraction of retina migrated in 2.6-3% acrylamide gels when subjected to sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) and was rendered acid-soluble by digestion with pronase. The solubility of the acid-insoluble glucan in acidified organic solvent was different from that of amylose or glycogen and similar to membrane proteins and glycoproteins. The glycogen fraction of retina contained 1.5-2.0 micrograms protein/100 micrograms glucose. When this fraction was analyzed by SDS-PAGE only one band, which moved near the top of 3% acrylamide gels, was stained with periodic acid Schiff reagent and Coomassie blue. The protein nature of the Coomassie-blue-stainable material was demonstrated by iodination of the glycogen fraction with [131I]iodide and identification of labeled monoiodotyrosine and diiodotyrosine. The bulk of the label comigrated with carbohydrate near the top of gels in SDS-PAGE and treatment with alpha- amylse decreased the molecular size of both labeled and stainable material. Physical dissociative conditions (7.5 M urea/0.83% SDS/0.83% mercaptoethanol) and the following chemical treatments failed to dissociate the iodinated protein from glycogen: (a) 0.1 M NaOH/0.1 M NaBH4 at room temperature for 24 h; (b) 1 M HCl in methanol at 50 degrees C for 10 min; (c) trifluoroacetic acid at 50 degrees C for 6 min. 131I-labeled glycogenpeptide was isolated after 131I-labeled protein-bound glycogen had been subjected to digestion with papain/pronase and passed through a Sepharose column. The results suggest that at least part of glycogen in bovine retina is firmly combined to protein as a single proteoglycogen molecule. Furthermore some of the proteoglycogen might be present as a trichloroacetic-acid-precipitable proteoglucan owing to its lower glucose content.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验