Fermi G, Perutz M F, Shaanan B, Fourme R
J Mol Biol. 1984 May 15;175(2):159-74. doi: 10.1016/0022-2836(84)90472-8.
The structure of human deoxyhaemoglobin was refined at 1.74 A resolution using data collected on film at room temperature from a synchrotron X-ray source. The crystallographic R-factor is 16.0%. The estimated error in atomic positions is 0.1 A overall, 0.14 A for main-chain atoms of internal segments, and 0.05 A for the iron atoms. The effects of intermolecular contacts on the structure were investigated; such contacts cause only highly localized distortions, as judged from the degree of molecular asymmetry that they induce. The geometry of the iron-nitrogen complex closely resembles that of the deoxymyoglobin structure of Takano (1977) and of the 5-co-ordinated model compounds of Hoard (1975) and Jameson et al. (1980). The distance of the iron from the mean plane of N(porphyrin) is 0.40(5) A and 0.36(5) A, respectively, at the alpha and beta haems, in contrast to the corresponding distance of +0.12(8) A and -0.11(8) A in oxyhaemoglobin ( Shaanan , 1983); the Fe-N epsilon (F8) bond length is 2.12(4) A and the Fe-N(porphyrin) bond length is 2.06(2) A; the last is also in good agreement with extended X-ray fluorescence spectroscopy measurements on deoxyhaemoglobin ( Eisenberger et al., 1978; Perutz et al., 1982). The haems are domed toward the proximal side; the separation between the mean planes of N(porphyrin) and C(porphyrin) being 0.16(6) A and 0.10(6) A, respectively at the alpha and beta haems. At the alpha haems, the normals to the mean pyrrole planes are tilted uniformly toward the haem centre, by about three degrees relative to the haem normal, and there is a folding of about four degrees of the haem about an axis running between the methene carbons that are between the pyrrole rings bearing like-type side-chains. At the beta haems, there is no such folding, and only pyrroles II and IV (those eclipsed by His F8) are appreciably tilted, by about eight degrees. The independence of these parameters from restraints imposed on the model was verified by unrestrained refinement of the entire molecule starting from a structure with modified haem geometry.
利用在室温下从同步加速器X射线源收集到的胶片数据,将人脱氧血红蛋白的结构精修至1.74 Å分辨率。晶体学R因子为16.0%。原子位置的估计误差总体为0.1 Å,内部片段主链原子为0.14 Å,铁原子为0.05 Å。研究了分子间接触对结构的影响;从它们所诱导的分子不对称程度判断,这种接触仅引起高度局部的畸变。铁-氮配合物的几何结构与高野(1977年)的脱氧肌红蛋白结构以及霍尔德(1975年)和詹姆森等人(1980年)的五配位模型化合物的几何结构非常相似。在α和β血红素处,铁与N(卟啉)平均平面的距离分别为0.40(5) Å和0.36(5) Å,相比之下,在氧合血红蛋白中相应的距离为+0.12(8) Å和 -0.11(8) Å(沙南,1983年);Fe-N ε(F8)键长为2.12(4) Å,Fe-N(卟啉)键长为2.06(2) Å;后者也与对脱氧血红蛋白的扩展X射线荧光光谱测量结果很好地吻合(艾森伯格等人,1978年;佩鲁茨等人,1982年)。血红素向近端一侧呈穹顶状;在α和β血红素处,N(卟啉)和C(卟啉)平均平面之间的间距分别为0.16(6) Å和0.10(6) Å。在α血红素处,平均吡咯平面的法线相对于血红素法线均匀地向血红素中心倾斜约三度,并且血红素围绕在带有同类侧链的吡咯环之间的次甲基碳之间延伸的轴折叠约四度。在β血红素处,没有这种折叠,只有吡咯II和IV(那些与His F8重叠的)明显倾斜约八度。通过从具有修改后的血红素几何结构的结构开始对整个分子进行无约束精修,验证了这些参数不受施加于模型的限制的影响。