Ofer S, Nowik I, Bauminger E R, Papaefthymiou G C, Frankel R B, Blakemore R P
Biophys J. 1984 Jul;46(1):57-64. doi: 10.1016/S0006-3495(84)83998-3.
Diffusive motions of the magnetosomes (enveloped Fe3O4 particles) in the magnetotactic bacterium Aquaspirillum magnetotacticum result in a very broad-line Mössbauer spectrum (T approximately 100 mm/s) above freezing temperatures. The line width increases with increasing temperature. The data are analyzed using a bounded diffusion model to yield the rotational and translational motions of the magnetosomes as well as the effective viscosity of the material surrounding the magnetosomes. The results are [theta 2] l/2 less than 1.5 degrees and [x2] 1/2 less than 8.4 A for the rotational and translational motions, respectively, implying that the particles are fixed in whole cells. The effective viscosity is 10 cP at 295 K and increases with decreasing temperature. Additional Fe3+ material in the cell is shown to be associated with the magnetosomes. Fe2+ material in the cell appears to be associated with the cell envelope.
趋磁细菌趋磁水生螺菌中磁小体(包膜Fe3O4颗粒)的扩散运动在高于冰点的温度下会产生非常宽线的穆斯堡尔谱(T约为100mm/s)。线宽随温度升高而增加。使用有界扩散模型对数据进行分析,以得出磁小体的旋转和平移运动以及磁小体周围物质的有效粘度。对于旋转和平移运动,结果分别为[θ2]1/2小于1.5度和[x2]1/2小于8.4埃,这意味着颗粒在整个细胞中是固定的。有效粘度在295K时为10厘泊,并随温度降低而增加。细胞中的额外Fe3+物质显示与磁小体相关。细胞中的Fe2+物质似乎与细胞膜相关。