Suppr超能文献

生物系统的通用能量原理与生物能量学的统一性

Universal energy principle of biological systems and the unity of bioenergetics.

作者信息

Green D E, Zande H D

出版信息

Proc Natl Acad Sci U S A. 1981 Sep;78(9):5344-7. doi: 10.1073/pnas.78.9.5344.

Abstract

Electronic energy (chemical bond energy) is the exclusive source of utilizable energy in biological systems. The release of this energy is mediated enzymically. The energy required to rupture a single covalent or ionic bond is prohibitively high under physiological conditions [in the range of 80-200 kcal/mol (1 kcal = 4.18 kJ)]. By the technique of the pairing of bond rupture (two juxtaposed bonds ruptured simultaneously) and the pairing of bond formation, enzymes can bypass the huge thermodynamic barrier to chemical change inherent in rupture of a single bond and operate within thermal limits. Enzymes accordingly can be conceived of as the energy machines that translate this principle. The principle of this transduction is that the energy required for forming a new covalent bond can fall within thermal limits when the original charged atom partner to the bond is displaced by a substitute charged atom under conditions in which the charge field of the bond remains constant during the substitution. In the transition from classical enzymology to energy coupling, muscular contraction, template-dependent replication, etc., new dimensions and possibilities are added to the basic enzymatic machinery. Specialized molecular devices (membranes, filaments, channels, templates, etc.) have to be introduced to make possible these extensions and permutations of enzymology. But it is demonstrable that the basis pairing principle is fully preserved during any of these modifications or extensions. Long range movement--of an ion, a filament, or a template--is the most important property introduced into classical enzymology in the transition to energy coupling systems.

摘要

电子能(化学键能)是生物系统中可利用能量的唯一来源。这种能量的释放由酶介导。在生理条件下,断裂单个共价键或离子键所需的能量高得令人望而却步[在80 - 200千卡/摩尔范围内(1千卡 = 4.18千焦)]。通过键断裂配对(两个并列键同时断裂)和键形成配对技术,酶可以绕过单键断裂所固有的巨大化学变化热力学障碍,并在热限制范围内发挥作用。因此,酶可以被视为将这一原理转化的能量机器。这种转导的原理是,当键的原始带电原子伙伴被替代带电原子取代时,在取代过程中键的电荷场保持不变的条件下,形成新共价键所需的能量可以落在热限制范围内。在从经典酶学向能量耦合、肌肉收缩、模板依赖性复制等的转变中,新的维度和可能性被添加到基本的酶机制中。必须引入专门的分子装置(膜、细丝、通道、模板等)以使酶学的这些扩展和排列成为可能。但可以证明,在任何这些修饰或扩展过程中,碱基配对原则都能得到充分保留。离子、细丝或模板的长距离移动是在向能量耦合系统转变过程中引入经典酶学的最重要特性。

相似文献

3
A critique of the chemosmotic model of energy coupling.对能量偶联化学渗透模型的批判。
Proc Natl Acad Sci U S A. 1981 Apr;78(4):2240-3. doi: 10.1073/pnas.78.4.2240.
5
Control, regulation and thermodynamics of free-energy transduction.
Biochimie. 1989 Aug;71(8):877-86. doi: 10.1016/0300-9084(89)90071-0.

本文引用的文献

2
Mechanism of phosphorylation in the respiratory chain.呼吸链中的磷酸化机制。
Nature. 1953 Nov 28;172(4387):975-8. doi: 10.1038/172975a0.
4
Relation between enzymic catalysis and energy coupling.酶催化与能量偶联之间的关系。
Proc Natl Acad Sci U S A. 1980 Oct;77(10):5703-5. doi: 10.1073/pnas.77.10.5703.
5
A critique of the chemosmotic model of energy coupling.对能量偶联化学渗透模型的批判。
Proc Natl Acad Sci U S A. 1981 Apr;78(4):2240-3. doi: 10.1073/pnas.78.4.2240.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验