Germaine G R, Tellefson L M
Infect Immun. 1981 Feb;31(2):598-607. doi: 10.1128/iai.31.2.598-607.1981.
We examined the effects of human whole salivary supernatant and parotid fluid on glucose uptake by Streptococcus mutans, Streptococcus sanguis, Streptococcus mitis, Actinomyces viscosus, Staphylococcus aureus, and Escherichia coli. The following three effects of saliva were observed: (i) inhibition of glucose uptake (S. mutans, S. sanguis), (ii) promotion of a transient, rapid (0 to 30 s) burst of glucose uptake (S. mutans, S. sanguis), and (iii) enhancement of glucose uptake (S. mitis, A. viscosus, S. aureus, E. coli). We observed no differences between the effects of whole salivary supernatant and the effects of parotid fluid. Heat treatment (80 degrees C, 10 min) of saliva or the addition of dithiothreitol abolished inhibition of glucose uptake. Supplementation of saliva with H(2)O(2) potentiated inhibition of glucose uptake. S. mitis and A. viscosus, which were stimulated by saliva alone, were inhibited by H(2)O(2)-supplemented saliva; 50% inhibition of glucose uptake by S. mutans and S. mitis required ca. 10 muM H(2)O(2) in 50% (vol/vol) saliva. Loss of the inhibitory action of saliva occurred at about 5% (vol/vol) saliva. Supplementation of saliva dilutions with SCN(-) and H(2)O(2) extended the inhibitory activity to solutions containing ca. 0.2% (vol/vol) saliva. We suggest that the salivary lactoperoxidase-SCN(-)-H(2)O(2) system is responsible for the inhibitory activity of saliva reported here. Furthermore, we concluded that lactoperoxidase and SCN(-) are present in saliva specimens in concentrations that exceed minimal inhibitory levels by factors of ca. 500 and 10 to 20, respectively. The resistance of A. viscosus, S. aureus, and E. coli to the inhibitory potential of saliva alone was probably due to the production of catalase by these organisms. The resistance of S. mitis may have been due to special effects of saliva on H(2)O(2) accumulation by this organism compared with S. mutans and S. sanguis. The basis of saliva-dependent enhancement of glucose uptake and the basis of promotion of a transient, rapid burst of glucose uptake are unknown. The role of the salivary lactoperoxidase-SCN(-)-H(2)O(2) system in the oral microbial ecosystem is discussed.
我们研究了人全唾液上清液和腮腺液对变形链球菌、血链球菌、轻链球菌、粘性放线菌、金黄色葡萄球菌和大肠杆菌摄取葡萄糖的影响。观察到唾液有以下三种作用:(i)抑制葡萄糖摄取(变形链球菌、血链球菌),(ii)促进葡萄糖摄取的短暂快速爆发(0至30秒)(变形链球菌、血链球菌),以及(iii)增强葡萄糖摄取(轻链球菌、粘性放线菌、金黄色葡萄球菌、大肠杆菌)。我们观察到全唾液上清液的作用与腮腺液的作用之间没有差异。唾液经热处理(80℃,10分钟)或添加二硫苏糖醇可消除对葡萄糖摄取的抑制作用。唾液中添加H₂O₂可增强对葡萄糖摄取的抑制作用。仅受唾液刺激的轻链球菌和粘性放线菌,在添加H₂O₂的唾液作用下受到抑制;在50%(体积/体积)唾液中,变形链球菌和轻链球菌对葡萄糖摄取的50%抑制需要约10μM H₂O₂。唾液的抑制作用在约5%(体积/体积)唾液时丧失。唾液稀释液中添加SCN⁻和H₂O₂可将抑制活性扩展到含约0.2%(体积/体积)唾液的溶液。我们认为唾液中的乳过氧化物酶-SCN⁻-H₂O₂系统是本文报道的唾液抑制活性的原因。此外,我们得出结论,唾液标本中乳过氧化物酶和SCN⁻的浓度分别比最低抑制水平高约500倍和10至20倍。粘性放线菌、金黄色葡萄球菌和大肠杆菌对仅唾液抑制作用的抗性可能是由于这些微生物产生过氧化氢酶。与变形链球菌和血链球菌相比,轻链球菌的抗性可能是由于唾液对该微生物积累H₂O₂的特殊作用。唾液依赖性增强葡萄糖摄取的基础以及促进葡萄糖摄取短暂快速爆发的基础尚不清楚。讨论了唾液乳过氧化物酶-SCN⁻-H₂O₂系统在口腔微生物生态系统中的作用。