Schliwa M, van Blerkom J
J Cell Biol. 1981 Jul;90(1):222-35. doi: 10.1083/jcb.90.1.222.
Three-dimensional cytoskeletal organization of detergent-treated epithelial African green monkey kidney cells (BSC-1) and chick embryo fibroblasts was studied in whole-mount preparations visualized in a high voltage electron microscope. Stereo images are generated at both low and high magnification to reveal both overall cytoskeletal morphology and details of the structural continuity of different filament types. By the use of an improved extraction procedure in combination with heavy meromyosin subfragment 1 decoration of actin filaments, several new features of filament organization are revealed that suggest that the cytoskeleton is a highly interconnected structural unit. In addition to actin filaments, intermediate filaments, and microtubules, a new class of filaments of 2- to 3-nm diameter and 30- to 300-nm length that do not bind heavy merymyosin is demonstrated. They form end-to-side contacts with other cytoskeletal filaments, thereby acting as linkers between various fibers, both like (e.g., actin- actin) and unlike (e.g., actin-intermediate filament, intermediate filament-microtubule). Their nature is unknown. In addition to 2- to 3-nm filaments, actin filaments are demonstrated to form end-to-side contacts with other filaments. Y-shaped actin filament "branches" are observed both in the cell periphery close to ruffles and in more central cell areas also populated by abundant intermediate filaments and microtubules. Arrowhead complexes formed by subfragment 1 decoration of actin filaments point towards the contact site. Actin filaments also form end-to-side contacts with microtubules and intermediate filaments. Careful inspection of numerous actin-microtubule contacts shows that microtubules frequently change their course at sites of contact. A variety of experimentally induced modifications of the frequency of actin-microtubule contacts can be shown to influence the course of microtubules. We conclude that bends in microtubules are imposed by structural interactions with other cytoskeletal elements. A structural and biochemical comparison of whole cells and cytoskeletons demonstrates that the former show a more inticate three-dimensional network and a more complex biochemical composition than the latter. An analysis of the time course of detergent extraction strongly suggests that the cytoskeleton forms a structural backbone with which a large number of proteins of the cytoplasmic ground substance associate in an ordered fashion to form the characteristic image of the "microtrabecular network" (J.J. Wolosewick and K.R. Porter. 1979. J. Cell Biol. 82: 114-139).
在高电压电子显微镜下观察的整装标本中,研究了去污剂处理的非洲绿猴肾上皮细胞(BSC - 1)和鸡胚成纤维细胞的三维细胞骨架组织。在低倍和高倍放大下生成立体图像,以揭示细胞骨架的整体形态以及不同细丝类型结构连续性的细节。通过使用改进的提取程序并结合肌动蛋白丝的重酶解肌球蛋白亚片段1标记,揭示了细丝组织的几个新特征,这表明细胞骨架是一个高度相互连接的结构单元。除了肌动蛋白丝、中间丝和微管外,还证实了一类新的细丝,其直径为2至3纳米,长度为30至300纳米,不与重酶解肌球蛋白结合。它们与其他细胞骨架细丝形成端对侧接触,从而充当各种纤维之间的连接物,包括同类纤维(例如,肌动蛋白 - 肌动蛋白)和不同类纤维(例如,肌动蛋白 - 中间丝、中间丝 - 微管)。它们的性质尚不清楚。除了2至3纳米的细丝外,还证实肌动蛋白丝与其他细丝形成端对侧接触。在靠近褶皱的细胞周边以及也有丰富中间丝和微管的更中心细胞区域都观察到了Y形肌动蛋白丝“分支”。由肌动蛋白丝的亚片段1标记形成的箭头复合物指向接触位点。肌动蛋白丝还与微管和中间丝形成端对侧接触。仔细检查大量肌动蛋白 - 微管接触表明,微管在接触位点经常改变其走向。可以证明,各种实验诱导的肌动蛋白 - 微管接触频率的改变会影响微管的走向。我们得出结论,微管的弯曲是由与其他细胞骨架元件的结构相互作用引起的。对全细胞和细胞骨架的结构和生化比较表明,前者显示出比后者更复杂的三维网络和更复杂的生化组成。对去污剂提取时间进程的分析强烈表明,细胞骨架形成了一个结构骨架,大量细胞质基质中的蛋白质以有序方式与之结合,形成了“微梁网络”的特征图像(J.J. Wolosewick和K.R. Porter。1979年。《细胞生物学杂志》82: 114 - 139)。