Suppr超能文献

铜对完美海假单胞菌中亚硝酸盐呼吸产物的调节作用。

Modulation by copper of the products of nitrite respiration in Pseudomonas perfectomarinus.

作者信息

Matsubara T, Frunzke K, Zumft W G

出版信息

J Bacteriol. 1982 Mar;149(3):816-23. doi: 10.1128/jb.149.3.816-823.1982.

Abstract

A synthetic growth medium was purified with the chelator 1,5-diphenylthiocarbazone to study the effects of copper on partial reactions and product formation of nitrite respiration in Pseudomonas perfectomarinus. This organism grew anaerobically in a copper-deficient medium with nitrate or nitrite as the terminal electron acceptor. Copper-deficient cells had high activity for reduction of nitrate, nitrite, and nitric oxide, but little activity for nitrous oxide reduction. High rates of nitrous oxide reduction were observed only in cells grown on a copper-sufficient (1 micro M) medium. Copper-deficient cells converted nitrate or nitrite initially to nitrous oxide instead of dinitrogen, the normal end product of nitrite respiration in this organism. In agreement with this was the finding that anaerobic growth of P. perfectomarinus with nitrous oxide as the terminal electron acceptor required copper. This requirement was not satisfied by substitution of molybdenum, zinc, nickel, cobalt, or manganese for copper. Reconstitution of nitrous oxide reduction in copper-deficient cells was rapid on addition of a small amount of copper, even though protein synthesis was inhibited. The results indicate an involvement of copper protein(s) in the last step of nitrite respiration in P. perfectomarinus. In addition we found that nitric oxide, a presumed intermediate of nitrite respiration, inhibited nitrous oxide reduction.

摘要

用螯合剂二苯基硫代卡巴腙对合成生长培养基进行纯化,以研究铜对完美海假单胞菌中亚硝酸盐呼吸的部分反应和产物形成的影响。该生物体在以硝酸盐或亚硝酸盐作为末端电子受体的缺铜培养基中厌氧生长。缺铜细胞对硝酸盐、亚硝酸盐和一氧化氮的还原具有高活性,但对一氧化二氮还原的活性很低。仅在铜充足(1微摩尔)的培养基上生长的细胞中观察到高比率的一氧化二氮还原。缺铜细胞最初将硝酸盐或亚硝酸盐转化为一氧化二氮,而不是该生物体中亚硝酸盐呼吸的正常终产物氮气。与此一致的是,发现以一氧化二氮作为末端电子受体时,完美海假单胞菌的厌氧生长需要铜。用钼、锌、镍、钴或锰替代铜不能满足这一需求。即使蛋白质合成受到抑制,向缺铜细胞中添加少量铜后,一氧化二氮还原的重建也很快。结果表明铜蛋白参与了完美海假单胞菌中亚硝酸盐呼吸的最后一步。此外,我们发现一氧化氮(亚硝酸盐呼吸的一种假定中间体)抑制一氧化二氮还原。

相似文献

1
Modulation by copper of the products of nitrite respiration in Pseudomonas perfectomarinus.
J Bacteriol. 1982 Mar;149(3):816-23. doi: 10.1128/jb.149.3.816-823.1982.
2
Separate nitrite, nitric oxide, and nitrous oxide reducing fractions from Pseudomonas perfectomarinus.
J Bacteriol. 1971 May;106(2):356-61. doi: 10.1128/jb.106.2.356-361.1971.
3
Blockage by acetylene of nitrous oxide reduction in Pseudomonas perfectomarinus.
Appl Environ Microbiol. 1976 Apr;31(4):504-8. doi: 10.1128/aem.31.4.504-508.1976.
7
Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans.
Appl Environ Microbiol. 1983 Apr;45(4):1247-53. doi: 10.1128/aem.45.4.1247-1253.1983.
8
Denitrification by a marine bacterium Pseudomonas nautica strain 617.
Ann Inst Pasteur Microbiol. 1987 May-Jun;138(3):371-83. doi: 10.1016/0769-2609(87)90125-6.
10
Dissimilatory nitrate reduction to nitrate, nitrous oxide, and ammonium by Pseudomonas putrefaciens.
Appl Environ Microbiol. 1985 Oct;50(4):812-5. doi: 10.1128/aem.50.4.812-815.1985.

引用本文的文献

1
Effect of Copper on Expression of Functional Genes and Proteins Associated with Denitrification.
Int J Mol Sci. 2022 Mar 21;23(6):3386. doi: 10.3390/ijms23063386.
3
Copper active sites in biology.
Chem Rev. 2014 Apr 9;114(7):3659-853. doi: 10.1021/cr400327t. Epub 2014 Mar 3.
4
Copper control of bacterial nitrous oxide emission and its impact on vitamin B12-dependent metabolism.
Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):19926-31. doi: 10.1073/pnas.1314529110. Epub 2013 Nov 18.
5
Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation.
Adv Microb Physiol. 2012;60:91-210. doi: 10.1016/B978-0-12-398264-3.00002-4.
6
Nitrous oxide emissions from wastewater treatment processes.
Philos Trans R Soc Lond B Biol Sci. 2012 May 5;367(1593):1265-77. doi: 10.1098/rstb.2011.0317.
8
Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide.
Front Microbiol. 2012 Feb 21;3:61. doi: 10.3389/fmicb.2012.00061. eCollection 2012.
9
Expression of the nos operon proteins from Pseudomonas stutzeri in transgenic plants to assemble nitrous oxide reductase.
Transgenic Res. 2012 Jun;21(3):593-603. doi: 10.1007/s11248-011-9555-1. Epub 2011 Sep 22.
10
Adaptation of aerobically growing Pseudomonas aeruginosa to copper starvation.
J Bacteriol. 2008 Oct;190(20):6706-17. doi: 10.1128/JB.00450-08. Epub 2008 Aug 15.

本文引用的文献

1
Nitrous oxide from soil denitrification: factors controlling its biological production.
Science. 1980 May 16;208(4445):749-51. doi: 10.1126/science.208.4445.749.
2
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
3
Biological significance of Pseudomonas cytochrome oxidase in Pseudomonas aeruginosa.
J Biochem. 1963 May;53:416-21. doi: 10.1093/oxfordjournals.jbchem.a127716.
6
Inhibition by sulfide of nitric and nitrous oxide reduction by denitrifying Pseudomonas fluorescens.
Appl Environ Microbiol. 1980 Jan;39(1):105-8. doi: 10.1128/aem.39.1.105-108.1980.
7
Electron transport to nitrous oxide in Paracoccus denitrificans.
FEBS Lett. 1980 May 5;113(2):279-84. doi: 10.1016/0014-5793(80)80609-0.
8
Reduction of N2O by biological N2-fixing systems.
Biochem Biophys Res Commun. 1966 May 25;23(4):409-14. doi: 10.1016/0006-291x(66)90742-x.
9
Studies on denitrification. IX. Nitrous oxide, its production and reduction to nitrogen.
J Biochem. 1968 Dec;64(6):863-71. doi: 10.1093/oxfordjournals.jbchem.a128968.
10
Studies on denitrification. XII. Gas production from amines and nitrite.
J Biochem. 1970 Feb;67(2):229-35. doi: 10.1093/oxfordjournals.jbchem.a129246.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验