Suppr超能文献

芳香烃在真菌代谢中的葡萄糖醛酸结合和硫酸结合作用。

Glucuronide and sulfate conjugation in the fungal metabolism of aromatic hydrocarbons.

作者信息

Cerniglia C E, Freeman J P, Mitchum R K

出版信息

Appl Environ Microbiol. 1982 May;43(5):1070-5. doi: 10.1128/aem.43.5.1070-1075.1982.

Abstract

Cunninghamella elegans oxidized naphthalene to ethyl acetate-soluble and water-soluble metabolites. Experiments with [14C]-naphthalene indicated that 21% of the substrate was converted into metabolites. The ratio of organic-soluble metabolites to water-soluble metabolites was 76:24. The major ethyl acetate-soluble naphthalene metabolites were trans-1,2-dihydroxy-1,2-dihydro-naphthalene, 4-hydroxy-1-tetralone, and 1-naphthol. Enzymatic treatment of the aqueous phase with either arylsulfatase or beta-glucuronidase released metabolites of naphthalene that were extractable with ethyl acetate. In both cases, the major metabolite was 1-naphthol. The ratio of water-soluble sulfate conjugates to water-soluble glucuronide conjugates was 1:1. Direct analysis of the aqueous phase by high-pressure liquid and thin-layer chromatographic and mass spectrometric techniques indicated that 1-naphthyl sulfate and 1-naphthyl glucuronic acid were major water-soluble metabolites formed from the fungal metabolism of naphthalene. C. elegans oxidized biphenyl primarily to 4-hydroxy biphenyl. Deconjugation experiments with biphenyl water-soluble metabolites indicated that the glucuronide and sulfate ester of 4-hydroxy biphenyl were metabolites. The data demonstrate that sulfation and glucuronidation are major pathways in the metabolism of aromatic hydrocarbons by fungi.

摘要

华美小克银汉霉将萘氧化为乙酸乙酯可溶和水可溶的代谢产物。用[14C] - 萘进行的实验表明,21%的底物被转化为代谢产物。有机可溶代谢产物与水可溶代谢产物的比例为76:24。主要的乙酸乙酯可溶萘代谢产物是反式 - 1,2 - 二羟基 - 1,2 - 二氢萘、4 - 羟基 - 1 - 四氢萘和1 - 萘酚。用芳基硫酸酯酶或β - 葡萄糖醛酸酶对水相进行酶处理后,可释放出能用乙酸乙酯萃取的萘代谢产物。在这两种情况下,主要代谢产物都是1 - 萘酚。水溶性硫酸酯共轭物与水溶性葡萄糖醛酸共轭物的比例为1:1。通过高压液相、薄层色谱和质谱技术对水相进行直接分析表明,1 - 萘基硫酸酯和1 - 萘基葡萄糖醛酸是由真菌对萘的代谢形成的主要水溶性代谢产物。华美小克银汉霉将联苯主要氧化为4 - 羟基联苯。对联苯水溶性代谢产物进行去共轭实验表明,4 - 羟基联苯的葡萄糖醛酸酯和硫酸酯是代谢产物。数据表明,硫酸化和葡萄糖醛酸化是真菌代谢芳香烃的主要途径。

相似文献

1
Glucuronide and sulfate conjugation in the fungal metabolism of aromatic hydrocarbons.
Appl Environ Microbiol. 1982 May;43(5):1070-5. doi: 10.1128/aem.43.5.1070-1075.1982.
2
Transformation of 1- and 2-methylnaphthalene by Cunninghamella elegans.
Appl Environ Microbiol. 1984 Jan;47(1):111-8. doi: 10.1128/aem.47.1.111-118.1984.
3
Metabolism of naphthalene by Cunninghamella elegans.
Appl Environ Microbiol. 1977 Oct;34(4):363-70. doi: 10.1128/aem.34.4.363-370.1977.
5
The metabolism of tetralin.
Biochem J. 1968 Jul;108(4):551-9. doi: 10.1042/bj1080551.
7
Stereochemistry and evidence for an arene oxide-NIH shift pathway in the fungal metabolism of naphthalene.
Chem Biol Interact. 1983 Apr-May;44(1-2):119-32. doi: 10.1016/0009-2797(83)90134-5.
10
Fungal transformation of naphthalene.
Arch Microbiol. 1978 May 30;117(2):135-43. doi: 10.1007/BF00402301.

引用本文的文献

1
Evolution of Chemical Diversity in Echinocandin Lipopeptide Antifungal Metabolites.
Eukaryot Cell. 2015 Jul;14(7):698-718. doi: 10.1128/EC.00076-15. Epub 2015 May 29.
3
Interkingdom metabolic transformations captured by microbial imaging mass spectrometry.
Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13811-6. doi: 10.1073/pnas.1206855109. Epub 2012 Aug 6.
4
Identification of sulfation sites of metabolites and prediction of the compounds' biological effects.
Anal Bioanal Chem. 2006 Oct;386(3):666-74. doi: 10.1007/s00216-006-0495-1. Epub 2006 May 25.
6
Two-stage mineralization of phenanthrene by estuarine enrichment cultures.
Appl Environ Microbiol. 1988 Apr;54(4):929-36. doi: 10.1128/aem.54.4.929-936.1988.
8
Bacterial o-methylation of chloroguaiacols: effect of substrate concentration, cell density, and growth conditions.
Appl Environ Microbiol. 1985 Feb;49(2):279-88. doi: 10.1128/aem.49.2.279-288.1985.
9
Transformation of verapamil by Cunninghamella blakesleeana.
Appl Environ Microbiol. 2004 May;70(5):2722-7. doi: 10.1128/AEM.70.5.2722-2727.2004.
10
Novel ring cleavage products in the biotransformation of biphenyl by the yeast Trichosporon mucoides.
Appl Environ Microbiol. 2001 Sep;67(9):4158-65. doi: 10.1128/AEM.67.9.4158-4165.2001.

本文引用的文献

1
Microbial production of 4,4'-dihydroxybiphenyl: biphenyl hydroxylation by fungi.
Appl Environ Microbiol. 1980 Apr;39(4):702-8. doi: 10.1128/aem.39.4.702-708.1980.
2
Monooxygenase activity in Cunninghamella bainieri: evidence for a fungal system similar to liver microsomes.
Arch Biochem Biophys. 1973 May;156(1):97-103. doi: 10.1016/0003-9861(73)90345-7.
3
Microbial models of mammalian metabolism. Aromatic hydroxylation.
Arch Biochem Biophys. 1974 Apr 2;161(2):551-8. doi: 10.1016/0003-9861(74)90338-5.
5
Metabolism of naphthalene by Cunninghamella elegans.
Appl Environ Microbiol. 1977 Oct;34(4):363-70. doi: 10.1128/aem.34.4.363-370.1977.
6
Fungal transformation of naphthalene.
Arch Microbiol. 1978 May 30;117(2):135-43. doi: 10.1007/BF00402301.
7
Fungal metabolism of biphenyl.
Biochem J. 1979 Jan 15;178(1):223-30. doi: 10.1042/bj1780223.
8
Metabolism of naphthalene by cell extracts of Cunninghamella elegans.
Arch Biochem Biophys. 1978 Feb;186(1):121-7. doi: 10.1016/0003-9861(78)90471-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验