Suppr超能文献

多头绒泡菌微原质团质膜的电学性质

Electrical properties of the plasma membrane of microplasmodia of Physarum polycephalum.

作者信息

Fingerle J, Gradmann D

出版信息

J Membr Biol. 1982;68(1):67-77. doi: 10.1007/BF01872255.

Abstract

Microplasmodia of Physarum polycephalum have been investigated by conventional electrophysiological techniques. In standard medium (30 mM K+, 4 mM Ca++, 3 mM Mg++, 18 mM citrate buffer, pH 4.7, 22 degrees C), the transmembrane potential difference Vm is around -100 mV and the membrane resistance about 0.25 omega m2. Vm is insensitive to light and changes of the Na+/K+ ratio in the medium. Without bivalent cations in the medium and/or in presence of metabolic inhibitors (CCCP, CN-, N3-), Vm drops to about 0 mV. Under normal conditions, Vm is very sensitive to external pH (pH0), displaying an almost Nernstian slope at pH0 = 3. However, when measured during metabolic inhibition, Vm shows no sensitivity to pH0 over the range 3 to 6, only rising (about 50 mV/pH) at pH0 = 6. Addition of glucose or sucrose (but not mannitol or sorbitol) causes rapid depolarization, which partially recovers over the next few minutes. Half-maximal peak depolarization (25 mV with glucose) was achieved with 1 mM of the sugar. Sugar-induced depolarization was insensitive to pH0. The results are discussed on the basis of Class-I models of charge transport across biomembranes (Hansen, Gradmann, Sanders and Slayman, 1981, J. Membrane Biol. 63:165-190). Three transport systems are characterized: 1) An electrogenic H+ extrusion pump with a stoichiometry of 2 H+ per metabolic energy equivalent. The deprotonated form of the pump seems to be negatively charged. 2) In addition to the passive K+ pathways, there is a passive H+ transport system; here the protonated form seems to be positively charged. 3) A tentative H+-sugar cotransport system operates far from thermodynamic equilibrium, carrying negative charge in its deprotonated states.

摘要

多头绒泡菌的微小原质团已通过传统电生理技术进行了研究。在标准培养基(30 mM K⁺、4 mM Ca²⁺、3 mM Mg²⁺、18 mM柠檬酸盐缓冲液,pH 4.7,22℃)中,跨膜电位差Vm约为 -100 mV,膜电阻约为0.25 Ω·m²。Vm对光以及培养基中Na⁺/K⁺比值的变化不敏感。当培养基中没有二价阳离子和/或存在代谢抑制剂(CCCP、CN⁻、N₃⁻)时,Vm降至约0 mV。在正常条件下,Vm对外部pH(pH₀)非常敏感,在pH₀ = 3时呈现几乎能斯特斜率。然而,在代谢抑制期间测量时,Vm在3至6的范围内对pH₀不敏感,仅在pH₀ = 6时升高(约50 mV/pH)。添加葡萄糖或蔗糖(但不是甘露醇或山梨醇)会导致快速去极化,在接下来的几分钟内部分恢复。1 mM的糖可实现半最大峰值去极化(葡萄糖为25 mV)。糖诱导的去极化对pH₀不敏感。基于跨生物膜电荷传输的I类模型(Hansen、Gradmann、Sanders和Slayman,1981年,《膜生物学杂志》63:165 - 190)对结果进行了讨论。表征了三种转运系统:1)一种化学计量比为每代谢能量当量2个H⁺的生电H⁺外排泵。该泵的去质子化形式似乎带负电荷。2)除了被动K⁺途径外,还有一个被动H⁺转运系统;这里质子化形式似乎带正电荷。3)一个初步的H⁺ - 糖共转运系统在远离热力学平衡的情况下运行,其去质子化状态携带负电荷。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验