Suppr超能文献

“主动”离子转运系统电流-电压关系的解读:I. I类机制的稳态反应动力学分析

Interpretation of current-voltage relationships for "active" ion transport systems: I. Steady-state reaction-kinetic analysis of class-I mechanisms.

作者信息

Hansen U P, Gradmann D, Sanders D, Slayman C L

出版信息

J Membr Biol. 1981;63(3):165-90. doi: 10.1007/BF01870979.

Abstract

This paper develops a simple reaction-kinetic model to describe electrogenic pumping and co- (or counter-) transport of ions. It uses the standard steady-state approach for cyclic enzyme- or carrier-mediated transport, but does not assume rate-limitation by any particular reaction step. Voltage-dependence is introduced, after the suggestion of Läuger and Stark (Biochim. Biophys. Acta 211:458-466, 1970), via a symmetric Eyring barrier, in which the charge-transit reaction constants are written as k12 = ko12 exp(zF delta psi/2RT) and k21 = ko21 exp(-zF delta psi/2RT). For interpretation of current-voltage relationships, all voltage-independent reaction steps are lumped together, so the model in its simplest form can be described as a pseudo-2-state model. It is characterized by the two voltage-dependent reaction constants, two lumped voltage-independent reaction constants (k12, k21), and two reserve factors (ri, ro) which formally take account of carrier states that are indistinguishable in the current-voltage (I-V) analysis. The model generates a wide range of I-V relationships, depending on the relative magnitudes of the four reaction constants, sufficient to describe essentially all I-V datas now available on "active" ion-transport systems. Algebraic and numerical analysis of the reserve factors, by means of expanded pseudo-3-, 4-, and 5-state models, shows them to be bounded and not large for most combinations of reaction constants in the lumped pathway. The most important exception to this rule occurs when carrier decharging immediately follows charge transit of the membrane and is very fast relative to other constituent voltage-independent reactions. Such a circumstance generates kinetic equivalence of chemical and electrical gradients, thus providing a consistent definition of ion-motive forces (e.g., proton-motive force, PMF). With appropriate restrictions, it also yields both linear and log-linear relationships between net transport velocity and either membrane potential or PMF. The model thus accommodates many known properties of proton-transport systems, particularly as observed in "chemiosmotic" or energy-coupling membranes.

摘要

本文建立了一个简单的反应动力学模型来描述离子的电生泵浦以及同向(或反向)转运。它采用标准的稳态方法来处理循环酶介导或载体介导的转运,但不假定任何特定反应步骤存在速率限制。在Läuger和Stark(《生物化学与生物物理学报》211:458 - 466,1970)的建议之后,通过一个对称的艾林势垒引入电压依赖性,其中电荷转移反应常数写为k12 = ko12 exp(zFΔψ/2RT) 和k21 = ko21 exp( - zFΔψ/2RT)。为了解释电流 - 电压关系,所有与电压无关的反应步骤被归并在一起,所以该模型最简单的形式可描述为一个伪二态模型。它的特征在于两个与电压相关的反应常数、两个归并的与电压无关的反应常数(k12,k21)以及两个储备因子(ri,ro),这两个储备因子在形式上考虑了在电流 - 电压(I - V)分析中无法区分的载体状态。该模型根据四个反应常数的相对大小生成了广泛的I - V关系,足以描述目前在“活性”离子转运系统上可获得的几乎所有I - V数据。通过扩展的伪三态、四态和五态模型对储备因子进行代数和数值分析表明,对于归并途径中反应常数的大多数组合,它们是有界的且不大。这条规则最重要的例外情况是当载体放电紧接着膜的电荷转移且相对于其他组成的与电压无关的反应非常快时。这种情况产生了化学梯度和电梯度的动力学等效性,从而为离子驱动力(例如质子驱动力,PMF)提供了一致的定义。在适当的限制条件下,它还能得出净转运速度与膜电位或PMF之间的线性和对数线性关系。因此,该模型涵盖了质子转运系统的许多已知特性,特别是在“化学渗透”或能量耦合膜中观察到的特性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验