Suppr超能文献

生孢梭菌介导的缬氨酸和亮氨酸的相互转化。

Interconversion of valine and leucine by Clostridium sporogenes.

作者信息

Monticello D J, Costilow R N

出版信息

J Bacteriol. 1982 Nov;152(2):946-9. doi: 10.1128/jb.152.2.946-949.1982.

Abstract

Clostridium sporogenes has been found to require L-leucine and L-valine for growth in a minimal medium, although valine can be replaced by isobutyrate and leucine by isovalerate. Cells grown in minimal media incorporated significant 14C from [14C]valine into leucine and from [14C]leucine into valine. Growth with [4,5-3H]leucine also resulted in the incorporation of 3H into valine. These results indicate that these bacteria can interconvert leucine and valine.

摘要

已发现生孢梭菌在基本培养基中生长需要L-亮氨酸和L-缬氨酸,不过缬氨酸可用异丁酸替代,亮氨酸可用异戊酸替代。在基本培养基中生长的细胞将[14C]缬氨酸中的大量14C掺入亮氨酸,并将[14C]亮氨酸中的14C掺入缬氨酸。用[4,5-3H]亮氨酸培养也导致3H掺入缬氨酸。这些结果表明这些细菌能够使亮氨酸和缬氨酸相互转化。

相似文献

1
Interconversion of valine and leucine by Clostridium sporogenes.
J Bacteriol. 1982 Nov;152(2):946-9. doi: 10.1128/jb.152.2.946-949.1982.
2
Isoleucine synthesis by Clostridium sporogenes from propionate or alpha-methylbutyrate.
J Gen Microbiol. 1984 Feb;130(2):309-18. doi: 10.1099/00221287-130-2-309.
3
[Synthetic medium for culturing Clostridium sporogenes].
Mikrobiologiia. 1982 Mar-Apr;51(2):354-60.
4
The physiology of Clostridium sporogenes NCIB 8053 growing in defined media.
J Appl Bacteriol. 1987 Jan;62(1):81-92. doi: 10.1111/j.1365-2672.1987.tb02383.x.
5
Amino acid degradation by anaerobic bacteria.
Annu Rev Biochem. 1981;50:23-40. doi: 10.1146/annurev.bi.50.070181.000323.
6
Volatile acid production from threonine, valine, leucine and isoleucine by clostridia.
Arch Microbiol. 1978 May 30;117(2):165-72. doi: 10.1007/BF00402304.
9
Lipogenesis in isolated human sebaceous glands.
FEBS Lett. 1986 May 5;200(1):173-6. doi: 10.1016/0014-5793(86)80533-6.
10
The renal reabsorption of amino acids in dogs; valine, leucine and isoleucine.
Am J Physiol. 1946 Feb;145:491-9. doi: 10.1152/ajplegacy.1946.145.4.491.

引用本文的文献

1
Activity of Ancillary Heterotrophic Community Members in Anaerobic Methane-Oxidizing Cultures.
Front Microbiol. 2022 Jun 2;13:912299. doi: 10.3389/fmicb.2022.912299. eCollection 2022.
4
Revealing the hidden functional diversity of an enzyme family.
Nat Chem Biol. 2014 Jan;10(1):42-9. doi: 10.1038/nchembio.1387. Epub 2013 Nov 17.
5
Incorporation of [h]leucine and [h]valine into protein of freshwater bacteria: uptake kinetics and intracellular isotope dilution.
Appl Environ Microbiol. 1992 Nov;58(11):3638-46. doi: 10.1128/aem.58.11.3638-3646.1992.
6
Role of Amino Acids and Vitamins in Nutrition of Mesophilic Methanococcus spp.
Appl Environ Microbiol. 1987 Oct;53(10):2373-8. doi: 10.1128/aem.53.10.2373-2378.1987.

本文引用的文献

2
Biosynthesis of branched-chain amino acids from branched-chain fatty acids by rumen bacteria.
Arch Biochem Biophys. 1963 May;101:269-77. doi: 10.1016/s0003-9861(63)80012-0.
4
Isoleucine biosynthesis from 2-methylbutyric acid by anaerobic bacteria from the rumen.
J Bacteriol. 1969 Mar;97(3):1220-6. doi: 10.1128/jb.97.3.1220-1226.1969.
7
The amino acid-fermenting clostridia.
J Gen Microbiol. 1971 Jul;67(1):47-56. doi: 10.1099/00221287-67-1-47.
9
Leucine 2,3-aminomutase, an enzyme of leucine catabolism.
J Biol Chem. 1976 Apr 10;251(7):1859-63.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验