Suppr超能文献

蛋白质圆二色性中的信息内容。

Information content in the circular dichroism of proteins.

作者信息

Hennessey J P, Johnson W C

出版信息

Biochemistry. 1981 Mar 3;20(5):1085-94. doi: 10.1021/bi00508a007.

Abstract

A method is presented for predicting the secondary structure of a protein from its circular dichroism (CD) spectrum. Eight types of secondary structures are considered: helix; parallel and antiparallel beta strand; types I, II, and III beta turn; all other beta turns combined; and "other" structures. The method is based on mathematical calculation of orthogonal basis CD spectra from the CD spectra of proteins with known secondary structure. Five basis CD spectra are needed to reconstruct the 16 original protein CD spectra that extend into the vacuum ultraviolet region to 178 nm. Thus, one can expect to extract five independent pieces of information from the CD spectrum of a protein. Each basis CD spectrum corresponds to a known mixture of secondary structures so that the coefficients that reconstruct the protein CD spectrum can also be used to predict secondary structure. Furthermore, when the same method is applied to protein secondary structure rather than CD, it is found that only five basis secondary structure vectors are needed to reconstruct the original protein secondary structure vectors. Thus there are five independent "superstructures", consisting of a mixture of standard secondary structures, in the proteins studied. It would appear that there is enough information in the CD spectrum of a protein to predict all types of secondary structure. Our CD analyses compare favorably with the X-ray data.

摘要

本文提出了一种根据蛋白质的圆二色性(CD)光谱预测其二级结构的方法。该方法考虑了八种二级结构类型:螺旋;平行和反平行β链;I型、II型和III型β转角;所有其他β转角合并;以及“其他”结构。该方法基于从具有已知二级结构的蛋白质的CD光谱中进行正交基CD光谱的数学计算。需要五个基CD光谱来重建延伸至真空紫外区域至178 nm的16个原始蛋白质CD光谱。因此,可以预期从蛋白质的CD光谱中提取五条独立的信息。每个基CD光谱对应于一种已知的二级结构混合物,因此重建蛋白质CD光谱的系数也可用于预测二级结构。此外,当将相同方法应用于蛋白质二级结构而非CD时,发现仅需要五个基二级结构向量来重建原始蛋白质二级结构向量。因此,在所研究的蛋白质中存在五个独立的“超结构”,由标准二级结构的混合物组成。似乎蛋白质的CD光谱中有足够的信息来预测所有类型的二级结构。我们的CD分析与X射线数据相比具有优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验