Suppr超能文献

细胞几何形状对传播性动作电位期间电流流动的影响。

Effects of cellular geometry on current flow during a propagated action potential.

作者信息

Joyner R W, Westerfield M, Moore J W

出版信息

Biophys J. 1980 Aug;31(2):183-94. doi: 10.1016/S0006-3495(80)85049-1.

Abstract

An impulse propagating in a cell with nonuniform geometry sees an increased electrical load at regions of increasing diameter or at branch points with certain morphologies. We present here theoretical and experimental studies on the changes in membrane current and axial current associated with diameter changes. The theoretical studies were done with numerical solutions for cable equations that were generalized to include a varying diameter; the Hodgkin-Huxley equations were used to represent the membrane properties. The experimental studied were done using squid axons with the axial insertion of platinized platinum wires to create a localized region of increased electrical load. As an action potential approaches a region of increased electrical load, the action potential amplitude and rate of rise decrease, but there is a marked increase in the magnitude of the inward sodium current. The time integrals of the inward and outward currents are not constant along the fiber and indicate net inward charge movement at regions subjected to an increased electrical load. Changes in the waveform of the axial current at such a region help to explain the temperature dependence of propagation failure at regions of increasing electrical load.

摘要

在具有非均匀几何形状的细胞中传播的冲动,在直径增加的区域或具有特定形态的分支点处会遇到增加的电负荷。我们在此展示了关于与直径变化相关的膜电流和轴向电流变化的理论和实验研究。理论研究通过对电缆方程的数值解来进行,该方程已推广到包括变化的直径;霍奇金 - 赫胥黎方程用于表示膜特性。实验研究使用鱿鱼轴突,通过轴向插入镀铂的铂丝来创建一个电负荷增加的局部区域。当动作电位接近电负荷增加的区域时,动作电位幅度和上升速率会降低,但内向钠电流的幅度会显著增加。内向和外向电流的时间积分沿纤维并不恒定,表明在承受增加电负荷的区域有净内向电荷移动。在这样一个区域轴向电流波形的变化有助于解释在电负荷增加区域传播失败的温度依赖性。

相似文献

1
Effects of cellular geometry on current flow during a propagated action potential.
Biophys J. 1980 Aug;31(2):183-94. doi: 10.1016/S0006-3495(80)85049-1.
3
Action potential propagation and threshold parameters in inhomogeneous regions of squid axons.
J Physiol. 1983 Mar;336:285-300. doi: 10.1113/jphysiol.1983.sp014581.
4
Propagation through electrically coupled cells. Effects of a resistive barrier.
Biophys J. 1984 May;45(5):1017-25. doi: 10.1016/S0006-3495(84)84247-2.
6
Squid giant axons. A model for the neuron soma?
Biophys J. 1976 Aug;16(8):953-63. doi: 10.1016/S0006-3495(76)85745-1.
7
Slowing of the time course of the excitation of squid giant axons in viscous solutions.
J Membr Biol. 1979 May 25;47(3):303-25. doi: 10.1007/BF01869083.
8
Computation of long-distance propagation of impulses elicited by Poisson-process stimulation.
J Neurophysiol. 1995 Dec;74(6):2415-26. doi: 10.1152/jn.1995.74.6.2415.

引用本文的文献

1
Axon-somatic back-propagation in detailed models of spinal alpha motoneurons.
Front Comput Neurosci. 2015 Feb 12;9:15. doi: 10.3389/fncom.2015.00015. eCollection 2015.
2
Conduction block in PMP22 deficiency.
J Neurosci. 2010 Jan 13;30(2):600-8. doi: 10.1523/JNEUROSCI.4264-09.2010.
3
Antidromic propagation of action potentials in branched axons: implications for the mechanisms of action of deep brain stimulation.
J Comput Neurosci. 2008 Feb;24(1):81-93. doi: 10.1007/s10827-007-0043-9. Epub 2007 Jun 12.
5
Action potential propagation and threshold parameters in inhomogeneous regions of squid axons.
J Physiol. 1983 Mar;336:285-300. doi: 10.1113/jphysiol.1983.sp014581.
6
Propagation through electrically coupled cells. Effects of a resistive barrier.
Biophys J. 1984 May;45(5):1017-25. doi: 10.1016/S0006-3495(84)84247-2.

本文引用的文献

1
Intermittent conduction in the spinal cord.
J Physiol. 1935 Aug 22;85(1):73-103. doi: 10.1113/jphysiol.1935.sp003303.
2
Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo.
J Physiol. 1952 Apr;116(4):449-72. doi: 10.1113/jphysiol.1952.sp004717.
3
Presynaptic failure of neuromuscular propagation in rats.
J Physiol. 1959 Dec;149(1):1-22. doi: 10.1113/jphysiol.1959.sp006321.
4
The after-effects of impulses in the giant nerve fibres of Loligo.
J Physiol. 1956 Feb 28;131(2):341-76. doi: 10.1113/jphysiol.1956.sp005467.
6
A computer simulation of conduction in demyelinated nerve fibres.
J Physiol. 1972 Dec;227(2):351-64. doi: 10.1113/jphysiol.1972.sp010036.
7
Changes of action potential shape and velocity for changing core conductor geometry.
Biophys J. 1974 Oct;14(10):731-57. doi: 10.1016/S0006-3495(74)85947-3.
8
Impulse conduction in multiple sclerosis: a theoretical basis for modification by temperature and pharmacological agents.
J Neurol Neurosurg Psychiatry. 1974 Feb;37(2):152-61. doi: 10.1136/jnnp.37.2.152.
9
Axon voltage-clamp simulations. I. Methods and tests.
Biophys J. 1975 Jan;15(1):11-24. doi: 10.1016/S0006-3495(75)85788-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验