Moore J W, Ramón F, Joyner R W
Biophys J. 1975 Jan;15(1):11-24. doi: 10.1016/S0006-3495(75)85788-2.
This is the first in a series of four papers in which we present the numerical simulation of the application of the voltage clamp technique to excitable cells. In this paper we describe the application of the Crank-Nicolson (1947) method for the solution of the parabolic partial differential equations that describe a cylindrical cell in which the ionic conductances are functions of voltage and time (Hodgkin and Huxley, 1952). This method is compared with other methods in terms of accuracy and speed of solution for a propagated action potential. In addition, differential equations representing a simple voltage-clamp electronic circuit are presented. Using the voltage clamp circuit equations, we simulate the voltage clamp of a single isopotential membrane patch and show how the parameters of the circuit affect the transient response of the patch to a step change in the control potential. The stimulation methods presented in this series of papers allow the evaluation of voltage clamp control of an excitable cell or a syncytium of excitable cells. To the extent that membrane parameters and geometrical factors can be determined, the methods presented here provide solutions for the voltage profile as a function of time.
这是四篇系列论文中的第一篇,我们在其中展示了电压钳技术应用于可兴奋细胞的数值模拟。在本文中,我们描述了使用克兰克 - 尼科尔森(1947)方法来求解抛物型偏微分方程,这些方程描述了一个圆柱形细胞,其中离子电导是电压和时间的函数(霍奇金和赫胥黎,1952)。就传播动作电位的求解精度和速度而言,将该方法与其他方法进行了比较。此外,还给出了表示简单电压钳电子电路的微分方程。利用电压钳电路方程,我们模拟了单个等电位膜片的电压钳,并展示了电路参数如何影响膜片对控制电位阶跃变化的瞬态响应。本系列论文中提出的刺激方法允许评估对可兴奋细胞或可兴奋细胞合体的电压钳控制。在能够确定膜参数和几何因素的程度上,这里提出的方法提供了作为时间函数的电压分布的解决方案。