Bottini S
Biol Cybern. 1980;36(4):221-8. doi: 10.1007/BF00344254.
A mathematical model of an associative memory is presented, sharing with the optical holography memory systems the properties which establish an analogy with biological memory. This memory system--developed from Gabor's model of memory--is based on a noise-like coding of the information by which it realizes a distributed, damage-tolerant, "equipotential" storage through simultaneous state changes of discrete substratum elements. Each two associated items being stored are coded by each other by means of two noise-like patterns obtained from them through a randomizing preprocessing. The algebraic transformations operating the information storage and retrieval are matrix-vector products involving Toeplitz type matrices. Several noise-like coded memory traces are superimposed on a common substratum without crosstalk interference; moreover, extraneous noise added to these memory traces does not injure the stored information. The main performances shown by this memory model are: i) the selective, complete recovering of stored information from incomplete keys, both mixed with extraneous information and translated from the position learnt; ii) a dynamic recollection where the information just recovered acts as a new key for a sequential retrieval process; iii) context-dependent responses. The hypothesis that the information is stored in the nervous system through a noise-like coding is suggested. The model has been simulated on a digital computer using bidimensional images.
提出了一种联想记忆的数学模型,它与光学全息记忆系统具有一些特性,这些特性与生物记忆建立了类比关系。这个记忆系统是在加博尔记忆模型的基础上发展而来的,它基于信息的类噪声编码,通过离散基质元素的同时状态变化实现分布式、容错、“等势”存储。每对存储的相关项通过从它们经过随机预处理得到的两个类噪声模式相互编码。对信息进行存储和检索的代数变换是涉及托普利兹型矩阵的矩阵 - 向量乘积。几个类噪声编码的记忆痕迹叠加在一个共同的基质上而没有串扰干扰;此外,添加到这些记忆痕迹上的外部噪声不会损害所存储的信息。这个记忆模型所展示的主要性能有:i)从不完整的键中选择性地、完整地恢复存储的信息,这些键既与外部信息混合,又从所学位置进行了转换;ii)动态回忆,即刚刚恢复的信息作为顺序检索过程的新键;iii)上下文相关响应。提出了信息通过类噪声编码存储在神经系统中的假设。该模型已在数字计算机上使用二维图像进行了模拟。