Suppr超能文献

成年大鼠海马结构的去甲肾上腺素能神经支配。

Noradrenergic innervation of the adult rat hippocampal formation.

作者信息

Loy R, Koziell D A, Lindsey J D, Moore R Y

出版信息

J Comp Neurol. 1980 Feb 15;189(4):699-710. doi: 10.1002/cne.901890406.

Abstract

The noradrenaline (NA)-containing innervation of the hippocampal formation arises exclusively in the brainstem nucleus locus coeruleus. The projection is 75--90% ipsilateral, originating predominantly in the large, multipolar cells of the compact component of the nucleus. The axons course into the hippocampal formation by three pathways. Ammon's horn receives its NA innervation principally through the ventral amygdaloid bundle-ansa peduncularis, with smaller contributions from the fornix and ipsilateral fasciculus cinguli. The innervation of the area dentata is to a larger extent bilateral, with the greatest contribution arising from the ipsilateral fasciculus cinguli and approximately equal proportions of fibers traveling via the contralateral cingulum, fornix, and the ventral path. In general, the endogenous content of NA is greater in the area dentata than in Ammon's horn, and in both structures is greater in the temporal than in the septal ends. The pattern of NA innervation is similar at all septotemporal levels, however. The dense plexuses of preterminal and terminal elements appear in the infragranular hilus of the area dentata, stratum lucidum of CA3, and in the molecular layer of the subiculum. Fluorescent varicosities often appear in perisomatic clusters, or, closely apposed to dendrites of granule and pyramidal cells.

摘要

海马结构中含去甲肾上腺素(NA)的神经支配完全起源于脑干蓝斑核。该投射75% - 90%为同侧性,主要起源于蓝斑核致密部的大型多极细胞。轴突通过三条途径进入海马结构。海马角主要通过腹侧杏仁核束 - 脚间袢接受NA神经支配,穹窿和同侧扣带束的贡献较小。齿状回的神经支配在很大程度上是双侧性的,最大贡献来自同侧扣带束,通过对侧扣带束、穹窿和腹侧通路走行的纤维比例大致相等。一般来说,齿状回中NA的内源性含量高于海马角,并且在这两个结构中,颞叶端的含量高于隔区端。然而,在所有隔颞水平上,NA神经支配的模式都是相似的。终末前和终末成分的密集丛出现在齿状回的颗粒下层、CA3的透明层以及海马下托的分子层。荧光曲张体常出现在胞体周围的簇中,或紧邻颗粒细胞和锥体细胞的树突。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验