Suppr超能文献

Hydrolysis of RRR-alpha-tocopheryl acetate (vitamin E acetate) in the skin and its UV protecting activity (an in vivo study with the rat).

作者信息

Beijersbergen van Henegouwen G M, Junginger H E, de Vries H

机构信息

Department of Medicinal Photochemistry, Leiden/Amsterdam Centre for Drug Research, Leiden University, Netherlands.

出版信息

J Photochem Photobiol B. 1995 Jul;29(1):45-51. doi: 10.1016/1011-1344(95)90251-1.

Abstract

Vitamin E acetate is often used rather than vitamin E as an ingredient of skin care products and dermatological preparations, because it lacks the free phenolic OH group. However, because of this the acetate as such is biologically inactive. In spite of this intrinsic inactivity, the skin is protected against the harmful effects of sunlight after topical application of vitamin E acetate. Therefore it is supposed that hydrolysis takes place in the skin and that the reaction product, the radical scavenger vitamin E, is responsible for the protection observed. In this in vivo study with the rat, we have investigated the hydrolysis of RRR-alpha-tocopheryl acetate (vitamin E acetate) in the epidermis in relation to UV radiation protection. (As a measure of protection, we used the UV-induced binding of 8-methoxypsoralen to epidermal biomacromolecules.) After a period of 5 h from a single application of vitamin E acetate, hydrolysis into free vitamin E was not observed. No protection was found at this time point, corresponding with the absence of vitamin E. After treatment for 5 days, consisting of one topical application daily, the percentage of acetate present in the stratum corneum which was hydrolysed into free vitamin E was less than 1%, whereas the corresponding value for the viable layer of the epidermis was about 5%. The hydrolysis of vitamin E acetate in the epidermis proceeded very slowly. As a result, the absolute amount of free vitamin E, found in the total epidermis after treatment for 5 days with the acetate, was only a few times higher than the normal level. Yet, this very small amount of free vitamin E proved to be sufficient for maximal protection in this animal model. The results show that vitamin E acetate acts as a prodrug, which very slowly releases minute amounts of active vitamin E.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验